MATH 135 - Calculus 1
Review for Final
December 13, 2019

Practice Questions

1. What is the limit definition of the derivative $f^{\prime}(x)$?

Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided that the limit exists.
2. Use the definition to compute $f^{\prime}(x)$ for $f(x)=\sqrt{x-4}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-4}-\sqrt{x-4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-4}-\sqrt{x-4}}{h} \cdot \frac{\sqrt{x+h-4}+\sqrt{x-4}}{\sqrt{x+h-4}+\sqrt{x-4}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-4)-(x-4)}{h(\sqrt{x+h-4}+\sqrt{x-4})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h-4}+\sqrt{x-4})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-4}+\sqrt{x-4}} \\
& =\frac{1}{2 \sqrt{x-4}} .
\end{aligned}
$$

(Note that this agrees with the formula you would get by applying the chain rule to $f(x)=$ $(x-4)^{1 / 2}$.)
3. What is the equation of the tangent line to $y=\sqrt{x-4}$ at $x=8$?

The equation is

$$
y-2=\frac{1}{2 \sqrt{4}}(x-8)
$$

or

$$
y=\frac{1}{4} x .
$$

4. Suppose $f(x)$ is a function such that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ exist and are continuous for all real x. Assume that $f^{\prime}(x)>0$ on $(-3,-2)$ and $(2, \infty)$, while $f^{\prime}(x)<0$ on $(-\infty,-3)$ and $(-2,2)$. Also assume $f^{\prime}(-3)=f^{\prime}(-2)=f^{\prime}(2)=0$.
(a) What does the First Derivative Test tell you about $x=-3, x=-2$, and $x=2$?

Solution: Since f^{\prime} changes from negative to positive at $x=-3, f$ has a local minimum there. Similarily, f has local maximum at $x=-2$, and another local minimum at $x=2$
(b) Using the Mean Value Theorem, explain why f must have a point of inflection on the interval $(-3,-2)$ and another point of inflection on the interval $(-2,2)$.
Solution: Recall that the Mean Value Theorem says that if g is continuous on $[a, b]$ and differentiable on (a, b), then there exists a c in (a, b) where

$$
g^{\prime}(c)=\frac{g(b)-g(a)}{b-a} .
$$

If we apply this to $g=f^{\prime}$, then since $g(-3)=g(-2)=0$, there must be some point c in $(-3,-2)$ where $g^{\prime}(c)=f^{\prime \prime}(c)=0$. The same reasoning applies in the interval $(-2,2)$ as well.
(c) Suppose you also know $f(-3)=4, f(-2)=6, f(2)=0$, and

$$
\lim _{x \rightarrow \pm \infty} f(x)=12
$$

Sketch a possible graph $y=f(x)$ that satisfies all of these conditions.
Solution: Omitted. There are infinitely many correct graphs that satisfy all of these conditions.
5. Let $f(x)=\frac{20 x}{x^{2}-4 x+3}$, for which

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-20 x^{2}+60}{\left(x^{2}-4 x+3\right)^{2}} \\
f^{\prime \prime}(x) & =\frac{40 x^{3}-360 x+480}{\left(x^{2}-4 x+3\right)^{3}}
\end{aligned}
$$

(a) Where does $y=f(x)$ have vertical asymptotes? Does it have a horizontal asymptote? If so, where?
Solution Since $x^{2}-4 x+3=(x-1)(x-3)$ there are vertical asymptotes at $x=1$ and $x=3$. We must understand $\lim _{x \rightarrow \pm \infty} f(x)$ to determine horizontal asymptotes. By L'Hopital's Rule,

$$
\lim x \rightarrow \pm \infty \frac{x}{x^{2}-4 x+3}=\lim _{x \rightarrow \pm \infty} \frac{1}{2 x-4}=0
$$

There is a horizontal asymptote at the line $y=0$.
(b) What are

$$
\lim _{x \rightarrow 1^{-}} f(x) \text { and } \lim _{x \rightarrow 1^{+}} f(x) ?
$$

What about

$$
\lim _{x \rightarrow 3^{-}} f(x) \text { and } \lim _{x \rightarrow 3^{+}} f(x) ?
$$

Solution: By comparing the signs of $20 x$ and $x^{2}-4 x+3$ on either side of $x=1$ and $x=3$, we can see

$$
\lim _{x \rightarrow 1^{-}} f(x)=+\infty \text { and } \lim _{x \rightarrow 1^{+}} f(x)=-\infty
$$

Similary

$$
\lim _{x \rightarrow 3^{-}} f(x)=-\infty \text { and } \lim _{x \rightarrow 3^{+}} f(x)=+\infty ?
$$

Figure 1: $y=\frac{20 x}{x^{2}-4 x+3}$ for $-5 \leq x \leq 10$
(c) Does $f(x)$ have any critical points? Where are they located? What are the critical values?
Solution: There are critical points at the solutions of $f^{\prime}(x)=0$ - namely where $-20 x^{2}+$ $60=0$, so $x= \pm \sqrt{3}$. The critical values are $f(\sqrt{3}) \doteq-37.3$ and $f(-\sqrt{3}) \doteq-2.68$.
(d) What is the concavity of the graph $y=f(x)$ on the interval $(3, \infty)$?

Solution: At all x in that interval, for instance at $x=4, f^{\prime \prime}(x)>0$. So the graph $y=f(x)$ is concave up.
(e) Sketch the graph $y=f(x)$.

Solution: See Figure 1 above.

