MATH 135 - Calculus 1
Solutions/Answers for Exam 3 Practice Problems November 18, 2016
I. Find the indicated derivative(s) and simplify.
(A)

$$
y=\ln (x)\left(x^{7}-\frac{4}{\sqrt{x}}\right)
$$

Solution: By the product rule and the derivative rules for $\ln (x)$ and powers:

$$
y^{\prime}=\ln (x)\left(7 x^{6}+2 x^{-3 / 2}\right)+x^{6}-\frac{4}{x^{3 / 2}}
$$

(B)

$$
y=\sin ^{-1}\left(e^{2 x}+2\right)
$$

Solution: By the chain rule and the inverse sine derivative rule:

$$
y^{\prime}=\frac{1}{\sqrt{1-\left(e^{2 x}+2\right)^{2}}} \cdot 2 e^{2 x}=\frac{2 e^{2 x}}{\sqrt{1-\left(e^{2 x}+2\right)^{2}}}
$$

(C)

$$
y=\frac{\ln (x+1)}{3 x^{4}-1}
$$

Solution: Using the quotient rule:

$$
y^{\prime}=\frac{\left(3 x^{4}-1\right) \cdot \frac{1}{x+1}-\ln (x+1)\left(12 x^{3}\right)}{\left(3 x^{4}-1\right)^{2}}
$$

(D)

$$
y=\frac{\sin (x)}{1+\cos (x)}
$$

Solution: By the quotient rule:

$$
y^{\prime}=\frac{(1+\cos (x)) \cos (x)+\sin ^{2}(x)}{(1+\cos (x))^{2}}=\frac{1}{1+\cos (x)}
$$

(E)

$$
y=\tan ^{-1}\left(x^{2}+x\right)
$$

Solution: By the inverse tangent rule:

$$
\frac{d y}{d x}=\frac{2 x+1}{1+\left(x^{2}+2 x\right)^{2}}
$$

(F) Using implicit differentiation:

$$
x y^{2}-3 y^{3}+2 x^{4}-4 x y=2
$$

Solution: We have

$$
2 x y \frac{d y}{d x}+y^{2}-9 y^{2} \frac{d y}{d x}+8 x^{3}-4 x \frac{d y}{d x}-4 y=0
$$

so

$$
\frac{d y}{d x}=\frac{4 y-8 x^{3}-y^{2}}{2 x y-9 y^{2}-4 x}
$$

(G) Find the equation of the line tangent to the curve from (F) at $(x, y)=(1,0)$

Solution: The slope is 2 , so $y=2 x-2$.
(H) Find

$$
\frac{d}{d x}\left(5 x \sqrt{x}-\frac{2}{x^{3}}+11 x-4\right)
$$

Solution: The function can also be written as $5 x^{3 / 2}-2 x^{-3}+11 x-3$. In this form, we only need the power rule to differentiate:

$$
y^{\prime}=\frac{15}{2} x^{1 / 2}+6 x^{-4}+11 .
$$

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{t^{2} e^{3 t}}{t^{4}+1}\right) \tag{I}
\end{equation*}
$$

Solution: By the quotient rule, product rule, and chain rule the derivative is:

$$
\frac{\left(t^{4}+1\right) \cdot\left(3 t^{2} e^{3 t}+2 t e^{3 t}\right)-\left(t^{2} e^{3 t}\right) \cdot\left(4 t^{3}\right)}{\left(t^{4}+1\right)^{2}}=\frac{e^{3 t}\left(3 t^{6}-2 t^{5}+3 t^{2}+2 t\right)}{\left(t^{4}+1\right)^{2}} .
$$

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}} \frac{z^{2}-2 z+4}{z^{2}+1} \tag{J}
\end{equation*}
$$

Solution: Again using the quotient rule, the first derivative is:

$$
\frac{\left(z^{2}+1\right)(2 z-2)-\left(z^{2}-2 z+4\right)(2 z)}{\left(z^{2}+1\right)^{2}}=\frac{2 z^{2}-6 z-2}{\left(z^{2}+1\right)^{2}} .
$$

So then differentiating again, the second derivative is

$$
\begin{aligned}
& =\frac{\left(z^{2}+1\right)^{2}(4 z-6)-\left(2 z^{2}-6 z-2\right)(2)\left(z^{2}+1\right)(2 z)}{\left(z^{2}+1\right)^{4}} \\
& =\frac{\left(z^{2}+1\right)(4 z-6)-(4 z)\left(2 z^{2}-6 z-2\right)}{\left(z^{2}+1\right)^{3}} \\
& =\frac{-4 z^{3}+18 z^{2}+12 z-6}{\left(z^{2}+1\right)^{3}} .
\end{aligned}
$$

(K)

$$
\frac{d}{d x}\left(\sin (x)\left(x^{7}-\frac{4}{\sqrt{x}}\right)\right)
$$

Solution: Rewrite the fuction as $\sin (x)\left(x^{7}-4 x^{-1 / 2}\right)$. Then by the product rule the derivative is:

$$
\sin (x)\left(7 x^{6}+2 x^{-3 / 2}\right)+\left(x^{7}-4 x^{-1 / 2}\right) \cos (x)
$$

(L) Find y^{\prime} (note this is just another way of asking the same question!)

$$
y=\left(e^{2 x}+2\right)^{3}
$$

By the chain rule, the derivative is:

$$
3\left(e^{2 x}+2\right)^{2}\left(2 e^{2 x}\right)=6 e^{2 x}\left(e^{2 x}+2\right)^{3}
$$

(M) Find y^{\prime} and $y^{\prime \prime}$

$$
y=\frac{x+1}{3 x^{4}-1}
$$

Solution: By the quotient rule,

$$
y^{\prime}=\frac{\left(3 x^{4}-1\right)(1)-(x+1)\left(12 x^{3}\right)}{\left(3 x^{4}-1\right)^{2}}=\frac{-9 x^{4}-12 x^{3}-1}{\left(3 x^{4}-1\right)^{2}}
$$

So then differentiating again with the quotient rule, we get

$$
y^{\prime \prime}=\frac{\left(12 x^{2}\right)\left(9 x^{5}+15 x^{4}+5 x+3\right)}{\left(3 x^{4}-1\right)^{3}}
$$

(There is a common factor of $3 x^{4}-1$ that can be cancelled between the numerator and the denominator after you apply the quotient rule the second time.)
(N) Find y^{\prime}

$$
y=\frac{\sin (x)}{1+\cos (x)}+x^{2} \cos \left(x^{3}+3\right)
$$

Solution: By the quotient, product, and chain rules:

$$
\begin{aligned}
y^{\prime} & =\frac{(1+\cos (x)) \cos (x)-\sin (x)(-\sin (x))}{(1+\cos (x))^{2}}-x^{2} \sin \left(x^{3}+3\right)\left(3 x^{2}\right)+2 x \cos \left(x^{3}+3\right) \\
& =\frac{1+\cos (x)}{(1+\cos (x))^{2}}-3 x^{4} \sin \left(x^{3}+3\right)+2 x \cos \left(x^{3}+3\right) \\
& =\frac{1}{1+\cos (x)}-3 x^{4} \sin \left(x^{3}+3\right)+2 x \cos \left(x^{3}+3\right)
\end{aligned}
$$

II. The total cost (in $\$$) of repaying a car loan at interest rate of $r \%$ per year is $C=f(r)$.
(A) What is the meaning of the statement $f(7)=20000$?

Solution: At an interest rate of 7% per year, the cost of repaying the loan is 20000 dollars.
(B) What is the meaning of the statement $f^{\prime}(7)=3000$? What are the units of $f^{\prime}(7)$?

Solution: At an interest rate of 7% per year, the rate of change of the cost of repaying the loan is 3000 dollars per (\% per year).
III. The quantity of a reagent present in a chemical reaction is given by $Q(t)=t^{3}-3 t^{2}+t+30$ grams at time t seconds for all $t \geq 0$. (Note: For a question like this, I could also give you the plot of the function and ask questions like those below. In this case you need to start from the formula and compute $Q^{\prime}(t)$; if you were given the graph, you need to make the connection between slopes of tangent lines and signs of $Q^{\prime}(t)$ visually.)
(A) Over which intervals with $t \geq 0$ is the amount increasing? (i.e. $Q^{\prime}(t)>0$) decreasing (i.e. $\left.Q^{\prime}(t)<0\right)$?

Solution: $Q^{\prime}(t)=3 t^{2}-6 t+1 . Q^{\prime}(t)=0$ when

$$
t=\frac{6 \pm \sqrt{36-12}}{6}=1 \pm \frac{\sqrt{6}}{3} \doteq 1.816, .184 .
$$

Since this is a quadratic function with a positive t^{2} coefficient, $Q^{\prime}(t)>0$ for $t>1.816$ and $t<.184 . Q^{\prime}(t)<0$ for $.184<t<1.816$ (t in seconds).
(B) Over which intervals is the rate of change of Q increasing? decreasing?

Solution: The rate of change of Q is increasing when $\left(Q^{\prime}\right)^{\prime}>0$ and decreasing when $\left(Q^{\prime}\right)^{\prime}<0$. The second derivative of Q is $Q^{\prime \prime}(t)=6 t-6$. So $Q^{\prime \prime}(t)>0$ for $t>1$ and $Q^{\prime \prime}(t)<0$ for $t<1$ (t in seconds).
IV. Compute the following limits using L'Hopital's Rule or other methods, as appropriate.
(A) $\lim _{x \rightarrow 0^{+}} x^{1 / 3} \ln (x)$

Solution: This is a $0 \cdot \infty$ form. We can write it as

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1 / 3}}
$$

which makes it an ∞ / ∞ form. Applying L'Hopital's Rule, this is

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{1 / x}{(-1 / 3) x^{-4 / 3}} & =\lim _{x \rightarrow 0^{+}}-3 \cdot \frac{x^{4 / 3}}{x} \\
& =\lim _{x \rightarrow 0^{+}}-3 x^{1 / 3}=0 .
\end{aligned}
$$

(B) $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{2 x}}$

Solution: This is an ∞ / ∞ form. Applying L'Hopital's Rule three times:

$$
\begin{array}{rll}
\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{2 x}} & =\lim _{x \rightarrow \infty} \frac{3 x^{2}}{2 e^{2 x}} & \text { still } \infty / \infty \\
& =\lim _{x \rightarrow \infty} \frac{6 x}{4 e^{2 x}} & \text { still } \infty / \infty \\
& =\lim _{x \rightarrow \infty} \frac{6}{8 e^{2 x}} & \text { not } \infty / \infty \\
& =0 &
\end{array}
$$

(C) $\lim _{x \rightarrow 1} \frac{x^{2}-5 x+4}{x^{2}-3 x+2}$

Solution: This one is $0 / 0$. We can either use L'Hopital:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-5 x+4}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{2 x-5}{2 x-3}=\frac{-3}{-1}=3 .
$$

Or we can also factor the top and bottom and cancel:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-5 x+4}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{(x-1)(x-4)}{(x-1)(x-2)}=\lim _{x \rightarrow 1} \frac{x-4}{x-2}=\frac{-3}{-1}=3 .
$$

(D) $\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}$

Solution: This is a 1^{∞} form. We take logarithms, then apply L'Hopital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \ln \left(\left(1+\frac{4}{x}\right)^{x}\right) & =\lim _{x \rightarrow \infty} x \ln \left(1+\frac{4}{x}\right) \quad \text { this is } \infty \cdot 0 \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{4}{x}\right)}{\frac{1}{x}} \quad(\text { this is } 0 / 0) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{4}{x}} \cdot \frac{-4}{x^{2}}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{4}{1+\frac{x}{4}} \\
& =4
\end{aligned}
$$

Since we took logarithms to get the function whose limit is 4 , the original limit is then found by exponentiating:

$$
\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}=e^{4}
$$

V. All parts of this question refer to $f(x)=4 x^{3}-x^{4}$.
(A) Find and classify all the critical points of f using the First Derivative Test.

Solution: $f^{\prime}(x)=12 x^{2}-4 x^{3}=4 x^{2}(3-x)$. This is defined for all x and equal to zero at $x=0$ and $x=3$. Note that $4 x^{2} \geq 0$ for all x. So the sign of $f^{\prime}(x)$ comes from the $3-x$ factor. That is negative for $x>3$ and positive for $x<3$. Hence f^{\prime} changes sign from positive to negative at $x=3$ and the First Derivative Test says f has a local local maximum at $x=3$. On the other hand, $f^{\prime}(x)$ does not change sign at $x=0$, so that critical point is neither a local maximum nor a local minimum.
(B) Over which intervals is the graph $y=f(x)$ concave up? concave down?

Solution: $f^{\prime \prime}(x)=24 x-12 x^{2}=12 x(2-x)$, which is zero at $x=0$ and $x=2$. Then $f^{\prime \prime}(x)>0$ and the graph $y=f(x)$ is concave up on $(0,2)$ and $f^{\prime \prime}(x)<0$ and the graph $y=f(x)$ is concave down on $(-\infty, 0)$ and $(2, \infty)$.

Figure 1: Plot of $y=f(x)$ for Problem V
(C) Sketch the graph $y=f(x)$.

Solution: See Figure 1 on the back of this page.
(D) Find the absolute maximum and minimum of $f(x)$ on the interval $[1,4]$.

Solution: Only the critical point $x=3$ is in this interval. $f(1)=8, f(3)=27$ and $f(4)=0$. So $f(3)=27$ is the maximum value and $f(4)=0$ is the minimum value on the interval $[1,4]$.
VI. All three parts of this question refer to the function $f(x)$ whose derivative is plotted in Figure 1. NOTE: This is the graph $y=f^{\prime}(x)$ not $y=f(x)$.
(A) Give approximate values for all the critical points of $f(x)$ in the interval shown, and say whether f has a local maximum, a local minimum, or neither at each.
Solution: By inspection of the plot in Figure 1, we see that $f^{\prime}(x)=0$ at approximately $x=-5.2,-2$, and 1.2. Since f^{\prime} changes sign from + to - at $x=-5.2$ and $x=1.2$, those are local maxima for f. Since f^{\prime} changes sign from negative to positive at $x=-2$, that is a local minimum for f.
(B) Find approximate values for all the inflection points of $f(x)$.

Solution: $y=f(x)$ has inflection points where f^{\prime} changes from increasing to decreasing. That happens here at roughly $x=-3.9$ and $x=-0.8$.
(C) Over which intervals is $y=f(x)$ concave up? concave down?

Solution: Following on from (B), $y=f(x)$ will be concave down on intervals where $f^{\prime}(x)$ is decreasing - roughly $(-6,-3.9)$ and $(-0.8,2) . y=f(x)$ will be concave up on intervals where $f^{\prime}(x)$ is increasing - roughly $(-3.9,-0.8)$.

Figure 2: Plot of $y=f^{\prime}(x)$ for Problem VI

Figure 3: Figure for problem VII.
VII. A town wants to build a pipeline from a water station on a small island 2 miles off the shore of its water reservoir to the town. One possible route is shown dotted in red. The town is 6 miles along the shore from the point nearest the island. It costs $\$ 3$ million per mile to lay pipe under the water and $\$ 2$ million per mile to lay pipe along the shoreline.
A) Give the cost $C(x)$ of constructing the pipeline as a function of x.

Solution: By the Pythagorean theorem and the given information about cost per mile, we have

$$
C(x)=3 \sqrt{4+x^{2}}+2(6-x)
$$

(a) B) Where along the shoreline should the pipeline hit land to minimize the costs of construction?
Solution: To find the minimum of $C(x)$, we can restrict to x in the closed interval $[0,6]$, since it clearly does no good to take $x<0$ or $x>6$. The function $C(x)$ has a critical number for $x>0$ at the positive solution of $C^{\prime}(x)=0$:

$$
\begin{aligned}
0 & =\frac{3 x}{\sqrt{4+x^{2}}}-2, \text { or } \\
3 x & =2 \sqrt{4+x^{2}} \\
9 x^{2} & =16+4 x^{2} \\
5 x^{2} & =16 \\
x & =\frac{4}{\sqrt{5}} \doteq 1.79 .
\end{aligned}
$$

We have $C(0)=18, C(6)=3 \sqrt{40} \doteq 19.0$, and $C\left(\frac{4}{\sqrt{5}}\right) \doteq 16.47$. So the minimum cost is attained at $x=\frac{4}{\sqrt{5}} \doteq 1.79$ miles.

