MATH 135 - Calculus 1
The Derivative Product Rule
October 21, 2019

Background

In today's video, we saw that the derivative of a product of functions is given by

$$
(f \cdot g)^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

provided that f and g are each differentiable at x. (In other words, if f, g are differentiable separately, then so is the product, and the derivative of $f \cdot g$ is given by the formula above.) Today, we want to practice with this new derivative rule

Questions

(1) Differentiate by the product rule:
(a) $\left(x^{2}+3 x+1\right)\left(x^{3}+x+2\right)$. Then, expand out the product, differentiate using our more basic rules, and compare your answers. They should be equal.
(b) $\left(x^{2}+x+1\right) e^{x}$.
(c) $e^{2 x}$ (How can you break this up as an $f(x) g(x)$?)
(d) $\left(x^{1 / 2}+3 x\right)\left(x-4 e^{x}\right)$.
(2) Differentiate using the product rule "in two stages:"

$$
\left(x^{2}+3 x\right)\left(e^{x}+x\right)\left(x+x^{-2}\right) .
$$

(3) Now suppose you have a product $y=f(x) g(x) h(x)$ with three factors in general. If you group the terms like this:

$$
f(x) g(x) h(x)=f(x) \cdot(g(x) h(x)),
$$

explain why

$$
y^{\prime}=f(x)(g(x) h(x))^{\prime}+(g(x) h(x)) f^{\prime}(x) .
$$

Now work out $(g(x) h(x))^{\prime}$ by the product rule and rewrite things to see

$$
y^{\prime}=f(x) g(x) h^{\prime}(x)+f(x) g^{\prime}(x) h(x)+f^{\prime}(x) g(x) h(x) .
$$

(4) Continuing from (3), what is the pattern here? What if you have a product with any number of factors $y=f_{1}(x) f_{2}(x) \cdots f_{n}(x)$. What will the derivative of that product look like?

