MATH 135 - Calculus 1
Practice on Linear and Quadratic Functions
September 2, 2016

Background

Every line in the plane is described by an equation of the form $A x+B y+C=0$ for some constants A, B, C. If the line is not vertical $(B \neq 0)$, then it is the graph of a function. Recall that we say a function f is linear if $f(x)=m x+b$ for some constants m, b. The number m is called the slope of the line and the constant b is called the y-intercept of the line. Quadratic functions have the form $f(x)=A x^{2}+B x+C$ where $A \neq 0$.

Questions

1) Consider lines with equations of the form $2 x+c y-3=0$.
(a) For which value of c does the line contain the point $(1,2)$?
(b) For which value of c does the line have slope -5 ?
(c) Is there any value of c such that the line is horizontal? Why or why not?
(d) For which value of c is the line perpendicular to the line given by $5 x-3 y+1=0$? (Hint: What is true about slopes of perpendicular lines?)
2) The volume V (in liters) of sample of 3 grams of carbon dioxide at 27 degrees Celsius was measured as a function of the pressure p (in atmospheres) with the results in the following table:

$$
\begin{array}{l|lllll}
p & 0.25 & 1.00 & 2.50 & 4.00 & 6.00 \\
\hline V & 6.72 & 1.68 & 0.67 & 0.42 & 0.27
\end{array}
$$

Is V (approximately) a linear function of p ? Why or why not? If so, find an approximate formula $V=m p+b$. If not, can you see a equation of a different form for V as a function of p ?
(3) For each of the following quadratic functions $f(x)$, complete the square, then use that form to generate a sketch of the graph $y=f(x)$ by shifting and scaling the graph $y=x^{2}$.
(a) $f(x)=x^{2}+4 x+5$
(b) $f(x)=2 x^{2}-8 x+2$ (Factor out a 2 first, complete the square, then multiply the 2 back in. If you know the graph $y=g(x)$, what does the graph $y=2 g(x)$ look like?)

