MATH 135 – Calculus 1 Rates of Change, Slopes of Tangents September 16, 2019

Background

We are now ready to move into Chapter 2 of our text and consider average rates of change, and eventually limits and tangent lines. *This is really the start of the subject of calculus itself.* Everything we have done up until now has been review of precalculus topics to prepare!

Questions

- 1) A ball dropped from a height of 40 meters and from a state of rest at time t = 0 has height $s(t) = 40 4.9t^2$ meters at time t seconds.
 - (a) How far does the ball travel between t = 1 and t = 1.5? What is the ball's average velocity over that interval? (Note: Your answer should be negative. That just means the ball is moving downward.)
 - (b) Complete the following table by following the same steps you did in part (a) for each of the given intervals. Use at least 5 decimal places in all calculations for these.

interval	[1, 1.1]	[1, 1.01]	[1, 1.001]	[1, 1.0001]
ave.vel.				

- (c) Using this information, estimate the velocity of the ball right at the instant t = 1. This is called the *instantaneous velocity* of the ball at that time.
- (d) Now repeat part (b) for these intervals ending at t = 1:

interval	[0.9, 1]	[0.99, 1]	[0.999, 1]	[0.9999, 1]
ave.vel.				

Are these results consistent with what you did before in part (b)? (They should be!)

- 2) The fungus *Fusarium exosporium* infects a field of flax plants through the roots and causes the plants to wilt. Eventually the entire field is infected. The percentage f(t) of infected plants as a function of time t (in days) is given in Table 1 (on the back of the page).
 - (a) Plot the points (t, f(t)) given in the table and connect to make a smooth curve.
 - (b) Use your graph to say which is largest, and which is smallest of
 - the average infection rate over the time interval [0, 10],
 - the average infection rate over the time interval [20, 30],
 - the average infection rate over the time interval [40, 50]
 - (c) Using the table, compute the actual values of the average infection rates (in units of percent per day) over the intervals given in part (b).
 - (d) Draw a line tangent to your graph at t = 40. Estimate its slope from the information you have.

t = time in days		10	20	30	40	50	60
f(t) = percent infected	0	18	56	82	91	96	98

Table 1: Percent of flax plants infected as function of time in days