MATH 135 - Calculus 1
Review for Final
December 13, 2019

Practice Questions

1. What is the limit definition of the derivative $f^{\prime}(x)$?
2. Use the definition to compute $f^{\prime}(x)$ for $f(x)=\sqrt{x-4}$.
3. What is the equation of the tangent line to $y=\sqrt{x-4}$ at $x=8$?
4. Suppose $f(x)$ is a function such that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ exist and are continuous for all real x. Assume that $f^{\prime}(x)>0$ on $(-3,-2)$ and $(2, \infty)$, while $f^{\prime}(x)<0$ on $(-\infty,-3)$ and $(-2,2)$. Also assume $f^{\prime}(-3)=f^{\prime}(-2)=f^{\prime}(2)=0$.
(a) What does the First Derivative Test tell you about $x=-3, x=-2$, and $x=2$?
(b) Using the Mean Value Theorem, explain why the equation $f^{\prime \prime}(x)=0$ must have a solution in the interval $(-3,-2)$ and another solution in the interval $(-2,2)$.
(c) Suppose you also know $f(-3)=4, f(-2)=6, f(2)=0$, and

$$
\lim _{x \rightarrow \pm \infty} f(x)=12
$$

Sketch a possible graph $y=f(x)$ that satisfies all of these conditions.
5. Let $f(x)=\frac{20 x}{x^{2}-4 x+3}$, for which

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-20 x^{2}+60}{\left(x^{2}-4 x+3\right)^{2}} \\
f^{\prime \prime}(x) & =\frac{40 x^{3}-360 x+480}{\left(x^{2}-4 x+3\right)^{3}}
\end{aligned}
$$

(a) Where does $y=f(x)$ have vertical asymptotes? Does it have a horizontal asymptote? If so, where?
(b) What are

$$
\lim _{x \rightarrow 1^{-}} f(x) \text { and } \lim _{x \rightarrow 1^{+}} f(x) ?
$$

What about

$$
\lim _{x \rightarrow 3^{-}} f(x) \text { and } \lim _{x \rightarrow 3^{+}} f(x) ?
$$

(c) Does $f(x)$ have any critical points? Where are they located? What are the critical values?
(d) What is the concavity of the graph $y=f(x)$ on the interval $(3, \infty)$?
(e) Sketch the graph $y=f(x)$.

