MATH 135 - Calculus 1
The Intermediate Value Theorem
October 7, 2019

Background

It's our lucky day, because today we get to discuss some beautiful mathematics(!) The Intermediate Value Theorem (IVT) is the following statement:

Theorem 1 (IVT) Let $f(x)$ be a function that is continuous at every x in a closed interval $[a, b]$. Then for every M between and $f(a)$ and $f(b)$, there exists at least one $x=c$ in the interval where $f(c)=M$.

What this is saying in intuitive terms is that the graph of a function that is continuous at every point of a closed interval is one unbroken curve that can be drawn without lifting your pen or pencil from the paper. In the process it goes through every y-value between the y-coordinates of the endpoints $(a, f(a))$ and $(b, f(b))$. This statement has some important and surprising consequences!

Questions

(1) An important consequence: The IVT implies that many equations have solutions(!) For instance, if $f(x)$ is a continuous function on an interval $[a, b]$ and $f(a) \cdot f(b)<0$ (that is, $f(a)$ and $f(b)$ have opposite signs), then $f(x)=0$ has a root $x=c$ somewhere in (a, b). (Note: the root cannot be at one of the endpoints, since then $f(a) \cdot f(b)=0$. But we are assuming that product is <0.)
(a) Look at the particular cubic $P(x)=x^{3}-3 x^{2}+5 x-7$ first. Find a real number a where $P(a)<0$ and another $b>a$ where $P(b)>0$. Explain why $P(x)$ is continuous at all x, then use the IVT to argue that $P(x)=0$ has a root in your interval $[a, b]$.
(b) Now consider a general cubic polynomial $P(x)=A x^{3}+B x^{2}+C x+D$. Explain why $P(x)=0$ must have at least one real root. (Hint: since $A \neq 0$ we can divide both sides of the equation $A x^{3}+B x^{2}+C x+D=0$ by A to get an equation of the form $x^{3}+\beta x^{2}+\gamma x+\delta=0$, where $\beta=B / A, \gamma=C / A$, etc. Explain why, no matter what β, γ, δ are, you can always find a really big $x=b>0$ where $b^{3}+\beta b^{2}+\gamma b+\delta>0$. Then apply the IVT and argue that $P(x)=0$ has a root in $[a, b]$.)
(c) The same reasoning will apply to any polynomial $P(x)$ satisfying a particular condition on its degree, the highest power of x appearing with a nonzero coefficient. What is that condition?
(d) Show that $s(x)=x^{6}-8 x^{4}+10 x^{2}-1=0$ has six real roots, using the IVT, by finding 6 different intervals $[a, b]$ where $s(a) \cdot s(b)<0$. You can also find approximations to the roots with a graphing calculator, but that is not required.
(2) Another important consequence. Let f be continuous function on the interval $[0,1]$ and suppose that $0 \leq f(x) \leq 1$ for all x in $[0,1]$. Explain why $f(x)=x$ for some x in $[0,1]$. (Hint: Draw a picture to see why this is expected, then consider the function $f(x)-x$ and apply the IVT.
(3) A related, but surprising, consequence. Take any map and draw a circle on it anywhere. (See Figure 6 on page 103 of our textbook, for example.) I claim that the there are two distinct points on the earth corresponding to points on that circle where the temperature right now
is exactly the same. Here's the idea: If we put in a coordinate system with the center of the circle at $(0,0)$, then we can measure the counterclockwise angle θ from the positive x-axis to any diameter of the circle. Let $f(\theta)$ be the difference between the temperatures at the two endpoints of the diameter. In other words, if A and B are the two endpoints as in the figure, then

$$
f(\theta)=(\text { temperature at } A)-(\text { temperature at } B) .
$$

It is reasonable to assume that $f(\theta)$ is a continuous function of θ (Why?). Then consider what happens as θ increases from 0 to π radians. How are the values $f(0)$ and $f(\pi)$ related? What does the IVT tell you about f on the interval $[0, \pi]$?

