MATH 135 - Calculus 1
The Derivative of a Function
October 9 and 11, 2019

Initial Background

We are now ready to begin Chapter 3 in our textbook. In the videos for today's class, we introduced the derivative of a function f at $x=a$ in the domain of f :

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}, \tag{1}
\end{equation*}
$$

$f^{\prime}(a)$ will give the slope of the tangent line to the graph $y=f(x)$ at the point $(a, f(a))$. If x represents time, and $f(x)$ is a position, then $f^{\prime}(a)$ would be the instantaneous velocity.

All the techniques we learned in Chapter 2 for computing indeterminate form limits were, in fact, set up to compute the limits giving $f^{\prime}(a)(!)$ To start, let's practice (and review) some of those techniques!

Questions

(1) Using the limit definition from (1) above, compute $f^{\prime}(a)$ for $f(x)=x^{3}+2 x+1$-the derivative at a general $x=a$ for $f(x)=x^{3}+2 x+1$. Use your result to find the equation of the tangent line to the graph $y=x^{3}+2 x+1$ at the point $(1,4)$.
(2) Compute $f^{\prime}(a)$ for $f(x)=\sqrt{x+1}$-the derivative at a general $x=a$ for $f(x)=\sqrt{x+1}$. Here there is a restriction on which a "work." What is that restriction? Does this make sense, thinking of the graph $y=\sqrt{x+1}$? (Note: this is part of the parabola with equation $x=y^{2}-1$.) Use your result to find the equation of the tangent line to the graph $y=\sqrt{x+1}$ at the point $(3,2)$.

Further Background

In today's videos we also introduced the idea of deriving formulas for $f^{\prime}(x)$ for a general x, and considering f^{\prime} as a new function in its own right. We introduced these "shortcut formulas:"
(a) If $f(x)=x^{n}$ for any number n, then $f^{\prime}(x)=n x^{n-1}$.
(b) If $f(x)=e^{x}$, then $f^{\prime}(x)=e^{x}$ (yes, the same function!)
(c) If $f^{\prime}(x)$ exists, then so does $(k f)^{\prime}(x)$ and $(k f)^{\prime}(x)=k f^{\prime}(x)$.
(d) If $f^{\prime}(x)$ and $g^{\prime}(x)$ both exist, then so does $(f+g)^{\prime}(x)$, and $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.

Additional Questions

(3) Verify the formula in (a) for $f(x)=\frac{1}{x^{2}}=x^{-2}$. That is, you want to show $f^{\prime}(x)=-2 x^{-3}$ using the limit definition of $f^{\prime}(x)$.
(4) Using the shortcut rules above, find the derivatives of the following functions:
(a) $f(x)=x^{5}+2 x^{3 / 2}+4 x^{-3}$
(b) $g(x)=x^{1 / 2}+3 e^{x}$
(c) $h(x)=e^{\pi}$ (be carefu!!)

