MATH 135 – Calculus 1 The Derivative Chain Rule November 4, 2019

Background

Our next major derivative short-cut rule is one of the most important. This rule, called the Chain Rule allows us to differentiate functions that are built up by composition. Here's what it says: If g is differentiable at x and f is differentiable at g(x), then the composition $(f \circ g)(x) = f(g(x))$ is differentiable at x and

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

In words: The derivative of the composition is the derivative of the outside function (i.e. f'), with g(x) "plugged in," times the derivative of g. For example, the function

$$h(x) = \sqrt{x^2 + 4x + 9}$$

is the composition f(g(x)) where $f(x) = \sqrt{x}$ and $g(x) = x^2 + 4x + 9$ is "plugged in." The Chain Rule says the derivative of h will be given by computing $f'(x) = \frac{1}{2\sqrt{x}}$ (do you see where that comes from?), plugging g into f'(x), then multiplying by g'(x):

$$h'(x) = \frac{1}{2\sqrt{x^2 + 4x + 9}} \cdot (2x + 4) = \frac{x + 2}{\sqrt{x^2 + 4x + 9}}$$

Today's class will be devoted to understanding and practicing this rule. We'll continue and use this a different way next time.

Questions

For each function, identify an f(x) and g(x) such that the given function is the composition f(g(x)). Then apply the Chain Rule and compute the derivative:

(a)

$$h(x) = e^{3x+1}$$

(b)

$$h(x) = \frac{1}{(x^4 + 5x^2 + 1)^{3/2}}$$

(c)

$$h(x) = \sin(\cos(x) + x).$$

- (d) $h(x) = (\tan(x) + 4x)^3.$
- (e) Sometimes we need to use the Chain Rule more than once (if the function we're looking at is "several composition layers deep" like

$$h(x) = \cos^2(4x^3 + 2) = (\cos(4x^3 + 2))^2.$$

Note that this is f(g(x)) with $f(x) = x^2$ and $g(x) = \cos(4x^3 + 2)$. But g(x) is also a composition, so you'll need to use the Chain Rule again to find g'(x). With these hints, find h'(x).