MATH 135 - Calculus 1
The Derivative Chain Rule
November 4, 2019

Background

Our next major derivative short-cut rule is one of the most important. This rule, called the Chain Rule allows us to differentiate functions that are built up by composition. Here's what it says: If g is differentiable at x and f is differentiable at $g(x)$, then the composition $(f \circ g)(x)=f(g(x))$ is differentiable at x and

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

In words: The derivative of the composition is the derivative of the outside function (i.e. f^{\prime}), with $g(x)$ "plugged in," times the derivative of g. For example, the function

$$
h(x)=\sqrt{x^{2}+4 x+9}
$$

is the composition $f(g(x))$ where $f(x)=\sqrt{x}$ and $g(x)=x^{2}+4 x+9$ is "plugged in." The Chain Rule says the derivative of h will be given by computing $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ (do you see where that comes from?), plugging g into $f^{\prime}(x)$, then multiplying by $g^{\prime}(x)$:

$$
h^{\prime}(x)=\frac{1}{2 \sqrt{x^{2}+4 x+9}} \cdot(2 x+4)=\frac{x+2}{\sqrt{x^{2}+4 x+9}} .
$$

Today's class will be devoted to understanding and practicing this rule. We'll continue and use this a different way next time.

Questions

For each function, identify an $f(x)$ and $g(x)$ such that the given function is the composition $f(g(x))$. Then apply the Chain Rule and compute the derivative:
(a)

$$
h(x)=e^{3 x+1} .
$$

Answer: $h^{\prime}(x)=3 e^{3 x+1} . f(x)=e^{x}$ and $g(x)=3 x+1$. The 3 in front is the derivative of $g(x)$. which is the "inside" function in this case.)
(b)

$$
h(x)=\frac{1}{\left(x^{4}+5 x^{2}+1\right)^{3 / 2}} .
$$

Answer: $h^{\prime}(x)=\frac{-3}{2}\left(x^{4}+5 x^{2}+1\right)^{-5 / 2} \cdot\left(4 x^{3}+10 x\right)$. Here the $-3 / 2$ power is the "outside function" $f(x)$ and $g(x)=x^{4}+5 x^{2}+1$
(c)

$$
h(x)=\sin (\cos (x)+x) .
$$

Answer: $h^{\prime}(x)=\cos (\cos (x)+x) \cdot(-\sin (x)+1)$. Here $f(x)=\sin (x)$ and $g(x)=\cos (x)+x$.
(d)

$$
h(x)=(\tan (x)+4 x)^{3} .
$$

Answer: $f(x)=x^{3}$ and $g(x)=\tan (x)+4 x$, so the derivative is $h^{\prime}(x)=3(\tan (x)+4 x)^{2}$. $\left(\sec ^{2}(x)+4\right)$
(e) Sometimes we need to use the Chain Rule more than once (if the function we're looking at is "several composition layers deep" like

$$
h(x)=\cos ^{2}\left(4 x^{3}+2\right)=\left(\cos \left(4 x^{3}+2\right)\right)^{2} .
$$

Note that this is $f(g(x))$ with $f(x)=x^{2}$ and $g(x)=\cos \left(4 x^{3}+2\right)$. But $g(x)$ is also a composition, so you'll need to use the Chain Rule again to find $g^{\prime}(x)$. With these hints, find $h^{\prime}(x)$.

Answer: $h^{\prime}(x)=2 \cos \left(4 x^{3}+2\right) \cdot\left(-\sin \left(4 x^{3}+2\right)\right) \cdot 12 x^{2}=-24 x^{2} \cos \left(4 x^{3}+2\right) \sin \left(4 x^{3}+2\right)$

