Holy Cross College, Fall Semester, 2019 MATH 135, Section 01, Final Exam B Solutions Saturday, December 21, 8:00 AM

1. [20 points] One of the functions given in the following table is linear and the other is exponential. Find a formula for the exponential one and place it in the appropriate box. In the box for the other one, write "Linear."

x	1	2	3	4	5
$f(x)$	1.2	2.4	4.8	9.6	19.2
$g(x)$	-3.3	-4.4	-5.5	-6.6	-7.7

Answer:

$$
\begin{aligned}
f(x) & =1.2 \cdot 2^{x-1}=0.6 \cdot 2^{x} \\
g(x) & =\text { Linear }
\end{aligned}
$$

2. Let $f(x)=x^{3}+3 x+1$ and $g(x)=\sqrt{x^{2}+3}$.
(a) [10 points] Find the formula for the composition $g(f(x))$

Answer:

$$
g(f(x))=\sqrt{\left(x^{3}+3 x+1\right)^{2}+3}
$$

(b) [10 points] Write $g(x)=h(k(x))$ for two other functions h and k, where

Answer: One possibility is $h(x)=\sqrt{x}$ and $k(x)=x^{2}+3$.
(c) [10 points] Find the average rate of change of $g(x)$ per unit change in x on the interval $[0,2]$.

Answer: The average rate of change is

$$
\frac{g(2)-g(0)}{2-0}=\frac{\sqrt{7}-\sqrt{3}}{2} \doteq .457
$$

3. Compute the following limits [10 points each]. Any legal method is OK.
(a) $\left(^{*}\right) \lim _{x \rightarrow 0}(1+5 x)^{1 / x}$

Answer: This is a 1^{∞} indeterminate form. Take logarithms, rearrange to $0 / 0$ form, then apply L'Hopital's Rule. The answer is e^{5}.
(b) $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-5 x+6}$

This is a $0 / 0$ indeterminate form. It can be evaluated by factoring the top and the bottom and cancelling a factor of $x-3$:

$$
\lim _{x \rightarrow 3} \frac{(x-3)^{2}}{(x-3)(x-2)}=\lim _{x \rightarrow 3} \frac{x-3}{x-2}=0 .
$$

Alternatively, one can also use L'Hopital's Rule.
(c) $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}$

Answer:

$$
=\lim _{x \rightarrow 0} 3 \cdot \frac{\sin (3 x)}{3 x}=3 \cdot 1=3 .
$$

4.

(a) [10 points] State the limit definition of the derivative:

Answer:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided that the limit exists.
(b) [10 points] Use the definition to compute $f^{\prime}(x)$ for $f(x)=\frac{1}{x^{2}}$.

Answer: We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}-(x+h)^{2}\right.}{h(x+h)^{2} x^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 x h-h^{2}}{h(x+h)^{2} x^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 x-h^{2}}{(x+h)^{2} x^{2}} \\
& =\frac{-2 x}{x^{4}}=\frac{-2}{x^{3}}
\end{aligned}
$$

(Note that this agrees with the shortcut rule for differentiating $f(x)=x^{-2}$.
(c) [10 points] Find the equation of the tangent line to the graph $y=\frac{1}{x^{2}}$ at the point $(2,1 / 4)$. Note: you can do this one even if you were not able to complete part b above.

Answer: The slope is $\frac{-2}{2^{3}}=\frac{-1}{4}$. So by the point-slope form, the equation of the tangent line is

$$
y-1 / 4=\frac{-1}{4}(x-2)
$$

5. Compute the following derivatives using the derivative rules. You need not simplify.
(a) [10 points] $f(z)=z^{5}-\frac{1}{\sqrt[6]{z}}+e^{z}$.

Answer

$$
f^{\prime}(z)=5 z^{4}+\frac{1}{6} x^{-7 / 6}+e^{z}
$$

(b) [10 points] $g(x)=\left(x^{3}+1\right)\left(x^{2}-1\right)$

Answer: By the product rule,

$$
g^{\prime}(x)=\left(x^{3}+1\right)(2 x)+\left(x^{2}-1\right)\left(3 x^{2}\right) .
$$

This can also be done by multiplying out the product, then differentiating.
(c) $\left(^{*}\right)[10$ points $] h(t)=\frac{\ln \left(t^{2}+3\right)}{\sin ^{-1}(t)}$

Answer: By the quotient rule and the rules for the natural Log and inverse sine,

$$
h^{\prime}(t)=\frac{\sin ^{-1}(t) \cdot \frac{2 t}{t^{2}+3}-\ln \left(t^{2}+3\right) \cdot \frac{1}{\sqrt{1-t^{2}}}}{\left(\sin ^{-1}(t)\right)^{2}}
$$

(d) $\left(^{*}\right)[10$ points $]$ Find $y^{\prime}=\frac{d y}{d x}$ if $3 x^{3} y^{2}-7 y^{3}+\tan (x)=y$.

Answer: Differentiating implicitly,

$$
\frac{d y}{d x}=\frac{-\sec ^{2}(x)-9 x^{2} y^{2}}{6 x^{3} y-21 y^{2}-1}
$$

6. $\left(^{*}\right)$ [5 points each] All parts of this question refer to the function $f(x)$ whose derivative $f^{\prime}(x)$ is plotted in Figure 1 above. Assume the domain of f contains only the interval shown in the plot.
(a) On which interval(s) is $f(x)$ increasing?

Answer: Increasing on $(1,4)$.
(b) On which interval(s) is $y=f(x)$ concave down?

Figure 1: Plot for question 6.

Answer: On $(2,6)$.
(c) How many critical points does f have? Classify them as local maxima, local minima or neither.

Answer: One critical point at $x=4$. This is a local maximum for $f(x)$ by the first derivative test.
7. $\left(^{*}\right)$ [20 points] If the ticket price for the upcoming "Star Wars" movie is set at $\$ 10$, then 1000 tickets for the first showing will be sold. However, for each $\$ 0.25$ increase in the ticket price, the number of tickets sold will go down by 10 tickets. Each person who buys a ticket will also purchase $\$ 12$ of candy, popcorn and drinks at the concession stand. What is the maximum revenue that can be earned earned by the theater from the ticket and concession sales?

Answer: Let x be the number of $\$ 0.25$ increases over the $\$ 10$ level. Then with the ticket price at $10+0.25 x, 1000-10 x$ tickets will be sold, yielding revenue of $(1000-10 x)(10+0.25 x)$. In addition, 12 $1000-x)$ dollars in candy, popcorn, and drinks will be sold, yielding total revenue of

$$
R(x)=(1000-10 x)(10+0.25 x)+12(1000-10 x)=22000+30 x-2.5 x^{2}
$$

We differentiate and set equal to zero to find critical points:

$$
R^{\prime}(x)=30-5 x=0
$$

(e) Plot V

When $x=6$, and $R^{\prime \prime}(x)=-5<0$, so this is a local and global maximum for the revenue. The ticket price should be $\$(10+0.25 \cdot 6)=\$ 11.50$ and the maximum revenue is $R(6)=\$ 22090$. 8. $\left(^{*}\right)[3$ points each $]$ By considering the location of vertical and horizontal asymptotes, x and y-axis intercepts, etc. determine which of the following functions matches each graph. Circle the number of the graph showing each of the following functions.
(a) $f(x)=\frac{1}{x^{2}-16}$

Answer: V (vertical asymptotes at $x= \pm 4$, horizontal asymptote at $y=0$)
(b) $f(x)=\frac{x^{2}-1}{x^{2}+1}$

Answer: IV (no vertical asymptote and horizontal asymptote at $y=1$)
(c) $f(x)=\frac{x}{x^{2}+1}$

Answer: I (no vertical asymptotes, x-axis intercept at $x=0$, horizontal asymptote at $y=0$.)
(d) $f(x)=\frac{x}{x^{2}-1}$

Answer: III (vertical asymptotes at $x= \pm 1, x$-axis intercept at $x=0$, horizontal asymptote at $y=0$.)
(e) $f(x)=\frac{3 x+1}{x-1}$

Answer: II (only one vertical asymptote at $x=1$)

