Holy Cross College, Fall Semester, 2019 MATH 135, Section 01, Final Exam A Solutions Saturday, December 21, 8:00 AM

1. [20 points] One of the functions given in the following table is linear and the other is exponential. Find a formula for the linear one and place it in the appropriate box. In the box for the other one, write "Exponential."

x	1	2	3	4	5
$f(x)$	1.2	2.4	4.8	9.6	19.2
$g(x)$	-3.3	-4.4	-5.5	-6.6	-7.7

Answer:

$$
\begin{aligned}
f(x) & =\text { Exponential } \\
g(x) & =-1.1(x-1)-3.3=-1.1 x-2.2
\end{aligned}
$$

2. Let $f(x)=x^{3}+3 x+1$ and $g(x)=\sqrt{x^{2}+3}$.
(a) [10 points] Find a formula for the composition $f(g(x))$.

Answer: $f(g(x))=\left(x^{2}+3\right)^{3 / 2}+3\left(x^{2}+3\right)^{1 / 2}+3$.
(b) [10 points] Write $g(x)=h(k(x))$ for two other functions h and k, where $h(x) \neq x$ and $k(x) \neq x$.

Answer: $h(x)=\sqrt{x}$ and $k(x)=x^{2}+3$ is one possibility.
(c) [10 points] Find the average rate of change of $f(x)$ per unit change in x on the interval $[1,3]$.

Answer: The average rate of change is

$$
\frac{f(3)-f(1)}{3-1}=\frac{37-5}{2}=16 .
$$

3. Compute the following limits [10 points each]. Any legal method is OK.
(a) $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}$

Answer: This limit is

$$
\lim _{x \rightarrow 0} 4 \cdot \frac{\sin (4 x)}{4 x}=4 \cdot 1=4
$$

(b) $\lim _{x \rightarrow 2} \frac{x^{2}-8 x+12}{x^{2}-2 x}$

Answer: This is a $0 / 0$ indeterminate form. It can be done either by factoring the top and the bottom and canceling a factor of $x-2$ get

$$
\lim _{x \rightarrow 2} \frac{(x-2)(x-6)}{x(x-2)}=\lim _{x \rightarrow 2} \frac{x-6}{x}=-2
$$

or by using L'Hopital's Rule.
(c) $\left(^{*}\right) \lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{x}$

Answer: This is a 1^{∞} indeterminate form. Take logarithms, rearrange to $0 / 0$ form, then apply L'Hopital's Rule. The answer is e^{3}.
4.
(a) [10 points] State the limit definition of the derivative:

Answer:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided that the limit exists.
(b) [10 points] Use the definition to compute $f^{\prime}(x)$ for $f(x)=\frac{1}{x+1}$.

Answer: We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+1}-\frac{1}{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+1)-(x+h+1)}{h(x+h+1)(x+1)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+h+1)(x+1)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h+1)(x+1)} \\
& =\frac{-1}{(x+1)^{2}}
\end{aligned}
$$

(Note that this agrees with the result obtained from the chain rule for the derivative of $f(x)=(x+1)^{-1}$.)
(c) [10 points] Find the equation of the tangent line to the graph $y=$
frac $1 x+1$ at the point $(2,1 / 3)$. Note: you can do this one even if you were not able to complete part b above.

Answer: The slope is $f^{\prime}(2)=\frac{-1}{9}$ so the equation is

$$
y-\frac{1}{3}=\frac{-1}{9}(x-2)
$$

by the point-slope form.
5. Compute the following derivatives using the derivative rules. You need not simplify.
(a) [10 points] $f(x)=x^{4 / 5}-\frac{1}{\sqrt[3]{x}}+e^{x}$.

Answer:

$$
f^{\prime}(x)=\frac{4}{5} x^{-1 / 5}+\frac{1}{3} x^{-4 / 3}+e^{x}
$$

(b) [10 points] $g(x)=\frac{x^{2}+1}{x^{4}+1}$

Answer: By the quotient rule,

$$
g^{\prime}(x)=\frac{\left(x^{4}+1\right)(2 x)-\left(x^{2}+1\right)\left(4 x^{3}\right)}{\left(x^{4}+1\right)^{2}}
$$

(c) $\left(^{*}\right)[10$ points $] h(s)=\ln \left(4 s^{2}+2\right) \tan ^{-1}(s)$

Answer: By the product and chain rules,

$$
h^{\prime}(s)=\ln \left(4 s^{2}+2\right) \cdot \frac{1}{s^{2}+1}+\tan ^{-1}(s) \cdot \frac{8 s}{4 s^{2}+2} .
$$

(d) $\left(^{*}\right)[10$ points $]$ Find $y^{\prime}=\frac{d y}{d x}$ if $4 x^{2} y^{3}-2 y^{2}+\sin (x)=x^{4}$.

Answer: Differentiating implicitly,

$$
\frac{d y}{d x}=\frac{-\cos (x)+4 x^{3}-8 x y^{3}}{12 x^{2} y^{2}-4 y}
$$

6. (*) [5 points each] All parts of this question refer to the function $f(x)$ whose derivative $f^{\prime}(x)$ is plotted in Figure 1 above. Assume the domain of f contains only the interval shown in the plot.

Figure 1: Plot for question 6.
(a) On which interval(s) is $f(x)$ decreasing?

Answer: On the interval $(4,7)$.
(b) On which interval(s) is $y=f(x)$ concave up?

Answer: On $(1,2) \cup(6,7)$
(c) How many inflection points does f have?

Answer: Two inflection points at $x=2,6$
7. $\left(^{*}\right)$. [20 points] If the ticket price for the upcoming "Cats" movie is set at $\$ 10$, then 1000 tickets for the first showing will be sold. However, for each $\$ 0.25$ increase in the ticket price, the number of tickets sold will go down by 10 tickets. Each person who buys a ticket will also purchase $\$ 10$ of nachos and drinks at the concession stand. How should the ticket price be set to maximize the revenue earned by the theater from the ticket and concession sales?

Answer: Let x be the number of $\$ 0.25$ increases over the $\$ 10$ level. Then with the ticket price at $10+0.25 x, 1000-10 x$ tickets will be sold, yielding revenue of $(1000-10 x)(10+0.25 x)$. In addition, $10(1000-x)$ dollars in nachos and drinks will be sold, yielding total revenue of

$$
R(x)=(1000-10 x)(10+0.25 x)+10(1000-10 x)=20000+50 x-2.5 x^{2}
$$

(e) Plot V

We differentiate and set equal to zero to find critical points:

$$
R^{\prime}(x)=50-5 x=0
$$

When $x=10$, and $R^{\prime \prime}(x)=-5<0$, so this is a local and global maximum for the revenue. The ticket price should be $\$(10+0.25 \cdot 10)=\$ 12.50$.
8. $\left(^{*}\right)[3$ points each] By considering the location of vertical and Horizontal asymptotes, x and y-axis intercepts, etc. determine which of the following functions matches each graph. Circle the number of the graph showing each of the following functions.
(a) $f(x)=\frac{x}{x^{2}-1}$

Answer: III - vertical asymptotes at $x= \pm 1$ and horizontal asymptote at $y=0$.
(b) $f(x)=\frac{x}{x^{2}+1}$

Answer: I - no vertical asymptotes and horizontal asymptote at $y=0$.
(c) $f(x)=\frac{x^{2}-1}{x^{2}+1}$

Answer: IV - no vertical asymptotes and horizontal asymptote at $y=1$.
(d) $f(x)=\frac{1}{x^{2}-16}$

Answer: V - vertical asymptotes at $x= \pm 4$.
(e) $f(x)=\frac{3 x+1}{x-1}$

Answer: II - vertical asymptote at $x=1$ (and not -1).

