Holy Cross College, Fall Semester, 2016
MATH 135, Section 01, Final Exam
Friday, December 16, 8:00 AM

Your Name:

\qquad
Instructions. Clearly mark your answers, and show work on the test itself. Use the back of the preceding page if you need more space for scratch work. You must show all work for full credit, but please place answers in the boxes provided where appropriate.

Please do not write in the space below

Problem	Points/Possible
1	$/ 25$
2	$/ 20$
3	$/ 25$
4	$/ 15$
5	$/ 25$
6	$/ 20$
7	$/ 20$
8	$/ 60$
9	$/ 200$
Exam I Subscore	
Total	

1. [5 points each] Circle the number of the graph showing each of the following functions. Note that there is one "extra" graph that does not match any of these functions.
(a) $f(x)=e^{-x}+2$
(b) $f(x)=x^{3}-4 x$
(c) $f(x)=2 \cos (2 \pi x)$
I II III IV V
(d) $f(x)=\frac{1}{x^{2}-9}$
I II III IV V
(e) Give a formula of a function that matches the graph you did not circle.

$$
f(x)=\square
$$

2. [20 points] One of the functions given in the following table is linear and the other is exponential. Find a formula for the linear one and place it in the appropriate box. In the box for the other one, write "Exponential."

x	1	2	3	4	5
$f(x)$	1.2	0.6	0.3	0.15	0.075
$g(x)$	-2.3	-0.6	1.1	2.8	4.5

$$
\begin{aligned}
& f(x)=\square \\
& g(x)=\square
\end{aligned}
$$

3.

(a) [15 points] The depth of water in a tank oscillates sinusoidally once every 4 hours according to $d(t)=2 \cos \left(\frac{\pi t}{2}\right)+4$. Sketch the graph of the depth versus time.
(b) [10 points] Find the average rate of change of the depth on the interval [1, 1.1].
4. Compute the following limits [5 points each]. Any legal method is OK.
(a) $\lim _{x \rightarrow 2} \frac{x^{3}+2 x}{x-4}$

(b) $\lim _{x \rightarrow 2} \frac{x^{2}-7 x+10}{x^{2}-5 x+6}$
Limit $=\square$
(c) $\lim _{x \rightarrow \infty} \frac{5 x^{2}-x+21}{8 x^{2}-9 x+1}$
5.
(a) [5 points] State the limit definition of the derivative:

$$
f^{\prime}(x)=\square
$$

(b) [10 points] Use the definition to compute $f^{\prime}(x)$ for $f(x)=3 \sqrt{x+2}$.
(c) [10 points] Find the equation of the tangent line to the graph $y=3 \sqrt{x+2}$ at the point $(2,6)$.

Tangent line $=\square$
6. Compute the following derivatives using the derivative rules. You need not simplify. [5 points each]
(a) $f(t)=t^{4}-\frac{1}{\sqrt[5]{t}}+e^{t}$.

$$
f^{\prime}(t)=\square
$$

(b) $g(x)=\frac{x^{2}-2}{\cos (x)+1}$

$$
g^{\prime}(x)=\square
$$

(c) $h(z)=\ln \left(4 z^{2}+2 \tan ^{-1}(z)\right)$

$$
h^{\prime}(z)=\square
$$

(d) Find $\frac{d y}{d x}$ if $5 x^{2} y^{2}-2 y^{5}+x=1$.

$$
\frac{d y}{d x}=\square
$$

7. All parts of this question refer to the functions defined by $f(x)=x^{4}+2 a x^{2}$, where a is any fixed real number.
(a) [10 points] Assuming $a<0$, find the critical points of f, and construct a sign diagram for $f^{\prime}(x)$. Which of your critical points are local maxima and which are local minima?
(b) [10 points] Repeat part a, but assume now that $a>0$.
(c) [10 points] How many different inflection points does the graph $y=f(x)$ have if $a<0$? Explain.
8. [20 points] The radius and the height of a circular cone increase at a rate of $2 \mathrm{~cm} / \mathrm{sec}$. How fast is the volume of the cone increasing when $r=10$ and $h=20$?
9. [20 points] A rectangular poster is to have total area 600 square inches, including blank 1 inch wide margins on all four sides of a central printed area. What overall dimensions will maximize the printed area?
