MATH 134 – Calculus with Fundamentals 2 Another Practice Day on *u*-substitution February 12, 2018

Background

Today, we want to continue working on u-substitutions involving other transcendental functions.

Questions

For each problem,

- (i) find a candidate u,
- (ii) compute $du = \frac{du}{dx} dx$
- (iii) see whether the rest of the integrand can be matched with du, possibly up to a constant multiple (if not, then you might need to try a different u),
- (iv) finish the integration.

1.
$$\int_{1}^{\sqrt{3}} \frac{dx}{\tan^{-1}(x)(1+x^{2})} dx$$

2.
$$\int_{e}^{e^{2}} \frac{dx}{x(\ln(x))^{4}} dx$$

3. $\int \frac{\ln(\ln(x))}{x\ln(x)} dx$ (Note: There are several possible *u* to try here; keep going until you find the right one!)

4.
$$\int e^t \sqrt{e^t - 1} \, dt$$

5. $\int 8^x dx$ (Hint: rewrite 8^x as $8^x = (e^{\ln(8)})^x = e^{x \ln(8)}$, then think how you would do this by a *u*-substitution. The same trick will work to integrate any $\int b^x dx$ where b > 0. See page 315 in Rogawski and Adams.)