MATH 134 - Calculus with Fundamentals 2

Practice Day on Antiderivatives
February 5, 2018

Background

If $f(x)$ is a given function and $F(x)$ is another function that satisfies $F^{\prime}(x)=f(x)$, then we say $F(x)$ is an antiderivative of $f(x)$. Today we are going to practice on finding antiderivatives of functions defined by formulas by using our basic derivative rules, but "in reverse."

Questions

(1) Find an antiderivative for $f(x)=x^{3}+4 x^{2}+\sqrt{x}+1$. Check your answer by differentiating. Is your function $F(x)$ the only antiderivative of f ? Why or why not?
(2) Find an antiderivative for $f(x)=e^{-4 x}+e^{2 x}$. Check your answer by differentiating.
(3) Find an antiderivative for $f(x)=\cos (x)+\sec ^{2}(x)$.
(4) Find an antiderivative for $f(x)=\frac{5}{\sqrt{1-x^{2}}}+\frac{7}{1+x^{2}}$.
(5) Find an antiderivative for $f(x)=\frac{1}{x+5}$. Check your answer by differentiating. What if it was $f(x)=\frac{1}{2 x+5}$?
(6) Find an antiderivative of $f(x)=\sin (x)$ and use it to evaluate

$$
\int_{0}^{\pi} \sin (x) d x .
$$

Interpret via areas. (Note: Your answer should be strictly positive. Why?)

