MATH 134 - Calculus with Fundamentals 2
 First Practice on Improper Integrals
 April 3, 2018

Background

When $[a, b]$ is a finite interval, the integral

$$
\int_{a}^{b} f(x) d x
$$

is said to be improper whenever $f(x)$ has one or more discontinuities in the interval $[a, b]$. These can happen at the endpoints a or b, or at some c in (a, b). In all cases, improper integrals are handled by taking limits of "ordinary" integrals. For the purposes of this discussion, let us suppose that $f(x)$ has only one point of discontinuity in the interval.

- If f is discontinuous at a, then we say $\int_{a}^{b} f(x) d x$ converges if the limit

$$
\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

exists and we say the integral diverges otherwise.

- If f is discontinuous at b, then we say $\int_{a}^{b} f(x) d x$ converges if the limit

$$
\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

exists and we say the integral diverges otherwise.

- If f is discontinuous at d in (a, b), then we say $\int_{a}^{b} f(x) d x$ converges if both of the limits here:

$$
\lim _{c \rightarrow d^{-}} \int_{a}^{c} f(x) d x+\lim _{c \rightarrow d^{+}} \int_{c}^{b} f(x) d x
$$

exist and we say the integral diverges otherwise. (Note this says that if either one of the two limits does not exist, then the integral diverges.)

Questions

For each of the following,
(i) Say why the integral is improper by locating any discontinuities of the function.
(ii) Set up the appropriate limit(s) and evaluate.
(iii) Say whether the integral converges or diverges.

1. $\int_{1}^{2} \frac{1}{\sqrt[3]{x-1}} d x$
2. $\int_{0}^{2} \frac{1}{x^{2}-5 x+6} d x$
3. $\int_{1}^{3} \frac{1}{x^{2}-4 x+4} d x$
