MATH 134 - Calculus with Fundamentals 2

Practice Day 2 on Trigonometric Integrals
March 13, 2018

Background

Our approach to trigonometric integrals will be based in systematic application of reduction formulas. When you do these on quizzes and exams, formulas such as the following will be provided for your use in table format. You will be responsible for deciding which formula applies and for applying it correctly. Here is the second "batch of" these trigonometric reduction formulas:

- (ST1)

$$
\int \tan ^{n}(u) d u=\frac{\tan ^{n-1}(u)}{n-1}-\int \tan ^{n-2}(u) d u
$$

- (ST2)

$$
\int \tan (u) d u=-\ln |\cos (u)|+C
$$

- (ST3)

$$
\int \sec ^{n}(u) d u=\frac{\tan (u) \sec ^{n-2}(u)}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2}(u) d u
$$

- (ST4)

$$
\int \sec (u) d u=\ln |\sec (u)+\tan (u)|+C
$$

- For integrals involving both secants and tangents, note that the indentity $1+\tan ^{2}(x)=\sec ^{2}(x)$ shows that even powers of secants can be converted to even powers of tangents and vice versa. Many integrals involving $\sec (u)$ and $\tan (u)$ together can also be handled by rewriting $\tan (u)=\frac{\sin (u)}{\cos (u)}, \sec (u)=\frac{1}{\cos (u)}$ and applying the $\sin (u), \cos (u)$ reductions from last time.

Questions

For each of the following integrals, decide which of the reduction formulas above applies, determine the appropriate n (and m in the last two). Then apply the formula and complete the computation.

1. $\int \sec ^{3}(5 x) d x$
2. $\int \tan ^{6}(3 x) d x$
3. $\int \tan ^{2}(4 x) \sec ^{3}(4 x) d x\left(\right.$ Use $\tan ^{2}(u)=1+\sec ^{2}(u)$, then ST3.)
4. $\int \tan ^{3}(5 x) \sec ^{5}(5 x) d x$ (Convert to powers of $\sin (u)$ and $\cos (u)$.)
