

Figure 1: The region for problem I.

College of the Holy Cross, Spring 2018
 Math 134 - Solutions for Midterm Exam 2
 Friday, March 16

I. All parts of this problem refer to the region R bounded by $y=x, y=x^{2}+1, x=0$ and $x=2$.
A. (10) Sketch the region R.

Solution: See Figure 1.
B. (10) Compute the area of the region R.

Solution: The area is computed by

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2} x^{2}+1-x d x \\
& =\frac{x^{3}}{3}+x-\left.\frac{x^{2}}{2}\right|_{0} ^{2} \\
& =\frac{8}{3}+2-2-0 \\
& =\frac{8}{3}
\end{aligned}
$$

C. (10) Compute the volume of the solid of revolution obtained by rotating the region R about the x-axis.

Solution: The cross-sections by planes $x=$ constant are washers with inner radius x
and outer radius $x^{2}+1$, so the volume is

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} \pi\left(x^{2}+1\right)^{2}-\pi x^{2} d x \\
& =\pi \int_{0}^{2} x^{4}+x^{2}+1 d x \\
& =\pi\left(\frac{x^{5}}{5}+\frac{x^{3}}{3}+\left.x\right|_{0} ^{2}\right. \\
& =\pi\left(\frac{32}{5}+\frac{8}{3}+2-0\right) \\
& =\frac{(96+40+30) \pi}{15} \\
& =\frac{166 \pi}{15}
\end{aligned}
$$

D. (10) Compute the volume of the solid of revolution obtained by rotating the region R about the line $x=-2$. (Note: Any correct method is OK here.)

Solution: The easier way to do this is to use cylindrical shells:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} 2 \pi(x+2)\left(x^{2}+1-x\right) d x \\
& =2 \pi \int_{0}^{2} x^{3}+x^{2}-x+2 d x \\
& =2 \pi\left(\frac{x^{4}}{4}+\frac{x^{3}}{3}-\frac{x^{2}}{2}+\left.2 x\right|_{0} ^{2}\right. \\
& =2 \pi\left(4+\frac{8}{3}-2+4-0\right) \\
& =\frac{52 \pi}{3}
\end{aligned}
$$

This can also be done by slices, but the inner or outer radii of the washer cross-sections change at $y=1, y=2$, so the volume would be computed as the sum of three integrals like this:

$$
\begin{aligned}
\text { Volume } & =\int_{y=0}^{y=1} \pi(2+y)^{2}-\pi(2)^{2} d y+\int_{y=1}^{y=2} \pi(2+y)^{2}-\pi(2+\sqrt{y-1})^{2} d y \\
& +\int_{y=2}^{y=5} \pi(2+2)^{2}-\pi(2+\sqrt{y-1})^{2} d y
\end{aligned}
$$

It's a good exercise to verify that this gives the same value as the shell method, but there's a lot of algebra involved(!)
II. Compute each of the following integrals by an appropriate method (e.g. u-substitution, parts, etc.)
A. (15) $\int x^{2} \cos \left(5 x^{3}\right) d x$

Solution: This one is one where you just want a u-substitution. Let $u=5 x^{3}$, then $d u=15 x^{2} d x$ and the integral becomes

$$
\int \cos (u) \frac{1}{15} d u=\frac{1}{15} \sin (u)+C=\frac{1}{15} \sin \left(5 x^{3}\right)+C .
$$

B. (15) $\int x^{2} \cos (5 x) d x$

Solution: For this one, we use parts (twice), letting $u=x^{2}$ the first time and $d v=$ $\cos (5 x) d x$. Then $d u=2 x d x$ and $v=\frac{1}{5} \sin (5 x)$. So

$$
\int x^{2} \cos (5 x) d x=\frac{x^{2} \sin (5 x)}{5}-\frac{2}{5} \int x \sin (5 x) d x
$$

Now use parts again with $u=x$ and $d v=\sin (5 x)$; the final answer is

$$
\int x^{2} \cos (5 x) d x=\frac{x^{2} \sin (5 x)}{5}+\frac{2 x \cos (5 x)}{25}-\frac{2}{125} \sin (5 x)+C
$$

C. (15) $\int e^{\sqrt{x}} d x$ (Hint: Let $u=x^{1 / 2}$.)

Solution: If we do the indicated substitution first we get $d u=\frac{1}{2} x^{-1 / 2} d x$ so $d x=$ $2 x^{1 / 2} d u=2 u d u$. Rewriting the given integral in terms of u, we get $\int 2 u e^{u} d u$, which is a simple parts form:

$$
2 \int u e^{u} d u=2 u e^{u}-2 e^{u}+C=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}+C
$$

III.
A. (10) Identify a u and a $d v$, then carry out an integration by parts to derive the following reduction formula for exponents $k \geq 1$.

$$
\int(\ln (x))^{k} d x=x(\ln (x))^{k}-k \int(\ln (x))^{k-1} d x
$$

Solution: The appropriate choice is $u=(\ln (x))^{k}$ and $d v=d x$. Then $d u=k(\ln (x))^{k-1} \frac{1}{x} d x$ (chain rule), and $v=x$. Applying the parts formula,

$$
\int(\ln (x))^{k} d x=x(\ln (x))^{k}-k \int(\ln (x))^{k-1} \frac{1}{x} x d x
$$

The $\frac{1}{x}$ and the x cancel leaving the given form.
B. (5) Apply the formula in part A to integrate $\int(\ln (x))^{2} d x$. (Note: You can do this part even if you didn't see how to finish part A.)

Solution: We apply the formula first with $k=2$, then again with $k=1$:

$$
\begin{aligned}
\int(\ln (x))^{2} d x & =x(\ln (x))^{2}-2 \int \ln (x) d x \\
& =x(\ln (x))^{2}-2\left(x \ln (x)-\int d x\right) \\
& =x(\ln (x))^{2}-2 x \ln (x)+2 x+C .
\end{aligned}
$$

