College of the Holy Cross, Spring 2018
 Math 134 Midterm Exam 1 Solutions
 Friday, February 16

I. Both parts of this problem refer to $f(x)=-x^{2}+4$ on the interval $[a, b]=[0,2]$.
A. (15) Evaluate the R_{4} Riemann sum for f on this interval.

Solution: We have $\Delta x=\frac{2-0}{4}=\frac{1}{2}$, so $x_{1}=\frac{1}{2}, x_{2}=1, x_{3}=\frac{3}{2}$, and $x_{4}=2$. The right hand sum is

$$
\begin{aligned}
R_{4} & =\left(-(1 / 2)^{2}+4\right)(1 / 2)+\left(-(1)^{2}+4\right)(1 / 2)+\left(-(3 / 2)^{2}+4\right)(1 / 2)+\left(-(2)^{2}+4\right)(1 / 2) \\
& =(15 / 4)(1 / 2)+(3)(1 / 2)+(7 / 4)(1 / 2)+0 \\
& =34 / 8=4.25
\end{aligned}
$$

B. (10) Use Part I of the Fundamental Theorem of Calculus to evaluate $\int_{0}^{2}-x^{2}+4 d x$.

Solution: We have

$$
\begin{aligned}
\int_{0}^{2}-x^{2}+4 d x & =\frac{-x^{3}}{3}+\left.4 x\right|_{0} ^{2} \\
& =\frac{-8}{3}+8-0 \\
& =\frac{16}{3}
\end{aligned}
$$

C. (5) Your answer to part B should be larger than your answer to part A. Explain how you could know it would turn out that way even without computing the numerical values.

Solution: We can tell the integral will be less than the right hand sum because the function $-x^{2}+4$ is decreasing on $[0,2]$ (note, for instance, that $f^{\prime}(x)=-2 x<0$ for all x in $[0,2]$). This implies that the actual value of the integral is larger than all right-hand sums.
II. (10) The following limit of a sum would equal the definite integral $\int_{a}^{b} f(x) d x$ for some function $f(x)$ on some interval $[a, b]$. What function and what interval?

$$
\lim _{N \rightarrow \infty} \sum_{j=1}^{N}\left(2+\left(\frac{2 j}{N}\right)^{4}\right) \cdot \frac{2}{N}
$$

Solution: The sum is the R_{N} sum for $f(x)=2+x^{4}$ on [0,2], so the integral is

$$
\int_{0}^{2} 2+x^{4} d x
$$

III. Both parts of this problem refer to $f(x)=(x-2)^{2}(x-4)$.
A. (10) Let $A(x)=\int_{0}^{x} f(t) d t$. What is $A^{\prime}(x)$?

Solution: By the FTC Part II,

$$
A^{\prime}(x)=f(x)=(x-2)^{2}(x-4)
$$

B. (10) Now consider $B(x)=\int_{1}^{x^{3}} f(t) d t$. What is $B^{\prime}(x)$?

Solution: By the FTC Part II and the Chain Rule,

$$
B^{\prime}(x)=\left(x^{3}-2\right)^{2}\left(x^{3}-4\right) \cdot 3 x^{2}
$$

IV. Compute the following integrals.
A. (10) $\int \sqrt{x}+\frac{1}{x}-e^{x} d x$

Solution:

$$
\int \sqrt{x}+\frac{1}{x}-e^{x} d x=\frac{2}{3} x^{3 / 2}+\ln |x|-e^{x}+C
$$

B. (10)

Solution:

$$
\int \cos (x)+\frac{1}{\sqrt{1-x^{2}}} d x=\sin (x)+\sin ^{-1}(x)+C
$$

C. (10) Integrate with a suitable u-substitution: $\int_{0}^{1}\left(2 x^{4}+1\right)^{6 / 5} x^{3} d x$

Solution: Let $u(x)=2 x^{4}+1$. Then $d u=8 x^{3} d x$, so $x^{3} d x=\frac{1}{8} d u$. When $x=0$, $u(0)=1$ and when $x=1, u(1)=3$. In terms of u the integral becomes

$$
\frac{1}{8} \cdot \int_{u=1}^{u=3} u^{6 / 5} d u=\left.\frac{1}{8} \cdot \frac{5}{11} u^{11 / 5}\right|_{1} ^{3}=\frac{5}{88}\left(3^{11 / 5}-1\right) \doteq .5802
$$

D. (10) Integrate with a suitable u-substitution: $\int(\tan (x))^{3} \sec ^{2}(x) d x$.

Solution: Let $u=\tan (x)$. Then $d u=\sec ^{2}(x) d x$ and the integral becomes

$$
\int u^{3} d u=\frac{u^{4}}{4}+C=\frac{(\tan (x))^{4}}{4}+C .
$$

