College of the Holy Cross, Fall Semester, 2017
 MATH 133, Midterm 2 Solutions
 Friday, October 20

1. An object moves along a straight line path with position given by $x(t)=4 t^{2}+6 t,(t$ in seconds, x in feet).
(a) What is the average velocity of the object on the interval $[0,3]$?

Solution: The average velocity is

$$
v_{a v e}=\frac{x(3)-x(0)}{3-0}=\frac{4 \cdot 3^{2}+6 \cdot 3-0}{3-0}=18
$$

(units are feet per second).
(b) Fill in the following table with average velocities computed over the indicated intervals. Using this information, estimate the instantaneous velocity at $t=0$. Solution:

interval	$[0,1]$	$[0,0.1]$	$[0,0.01]$	$[0,0.001]$
ave.vel.	10	6.4	6.04	6.004

Estimated instantaneous velocity $=6$.
2. Answer all parts of this question by referring to the graph $y=f(x)$ in Figure 1 .
(a) (5) $\lim _{x \rightarrow 1^{-}} f(x)=2$ and $\lim _{x \rightarrow 1^{+}} f(x)=2$.
(b) (5) $f(x)$ has a jump discontinuity at $x=3$.
(c) (5) True/False: The limit $\lim _{x \rightarrow 2} f(x)$ does not exist. False. If so, what is the limit? If not, say why not: Limit is apparently -1 .
(d) (5) True/False: $f(x)$ has an infinite discontinuity in this part of the graph. False. $x=$ \qquad . (If not leave this space blank.)
(e) (5) True/False: $f(x)$ has a removable discontinuity shown in this part of the graph. True. If so, where is it? $x=1$.
3. Compute any four of the following limits. (Only the best four will be counted for your total score.)
(a) (10)

$$
\lim _{x \rightarrow 1} \frac{x^{2}+7 x-8}{x^{2}-1}
$$

Figure 1: $y=f(x)$ for problem 2.

Solution: This is a $0 / 0$ limit. We can factor, cancel, and evaluate as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}+7 x-8}{x^{2}-1} & =\lim _{x \rightarrow 1} \frac{(x-1)(x+8)}{(x-1)(x+1)} \\
& =\lim _{x \rightarrow 1} \frac{(x+8)}{(x+1)} \\
& =9 / 2
\end{aligned}
$$

(b) (10)

$$
\lim _{h \rightarrow 3} \frac{\sqrt{11+h}-\sqrt{14}}{h-3}
$$

Solution: Also a $0 / 0$ indeterminate form. We multiply top and bottom by the
conjugate radical, simplify, and then substitute:

$$
\begin{aligned}
\lim _{h \rightarrow 3} \frac{\sqrt{11+h}-\sqrt{14}}{h-3} & =\lim _{h \rightarrow 3} \frac{(\sqrt{11+h}-\sqrt{14})}{h-3} \cdot \frac{(\sqrt{11+h}+\sqrt{14})}{(\sqrt{11+h}+\sqrt{14})} \\
& =\lim _{h \rightarrow 3} \frac{11+h-14}{(h-3)(\sqrt{11+h}+\sqrt{14})} \\
& =\lim _{h \rightarrow 3} \frac{h-3}{(h-3)(\sqrt{11+h}+\sqrt{14})} \\
& =\lim _{h \rightarrow 3} \frac{1}{(\sqrt{11+h}+\sqrt{14})} \\
& =\frac{1}{2 \sqrt{14}} .
\end{aligned}
$$

(c) (10)

$$
\lim _{t \rightarrow 0} \frac{t^{2}+5}{t+1}
$$

Solution: This one is not indeterminate - it can be evaluated directly using the limit quotient, sum, and product rules

$$
\lim _{t \rightarrow 0} \frac{t^{2}+5}{t+1}=\frac{0^{2}+5}{0+1}=5 .
$$

(d) (10)

$$
\lim _{x \rightarrow \infty} \frac{x^{3}+3 x+1}{7 x^{3}+x^{2}+4 x} .
$$

Solution: We can multiply the top and bottom by $\frac{1}{x^{3}}$ to obtain:

$$
\begin{aligned}
\lim x \rightarrow \infty \frac{\left(x^{3}+3 x+1\right) \cdot \frac{1}{x^{3}}}{\left(7 x^{3}+x^{2}+4 x\right) \cdot \frac{1}{x^{3}}} & =\lim _{x \rightarrow \infty} \frac{1+\frac{3}{x^{2}}+\frac{1}{x^{3}}}{7+\frac{1}{x}+\frac{4}{x^{2}}} \\
& =\frac{1}{7}
\end{aligned}
$$

(e) (10)

$$
\lim _{t \rightarrow 0} \frac{\sin (9 t)}{t}
$$

Solution: For this one, we want to apply the formula

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

but that requires having exactly the same thing "inside" the sine function and in the denominator. If we multiply top and bottom by 9 we get

$$
\lim _{t \rightarrow 0} \frac{\sin (9 t)}{t}=\lim _{t \rightarrow 0} \frac{9 \sin (9 t)}{9 t}=9 \cdot 1=9 .
$$

4. Let $f(x)=x^{2}-2 x+2$.
(a) (5) What is the slope of the secant line to the graph through the points $(1,1)$ and $(3,5)$?
Solution: The slope is

$$
m_{s e c}=\frac{5-1}{3-1}=2 .
$$

(b) (5) Give a general formula for the slope of the secant line through the points $(1,1)$ and $\left(1+h,(1+h)^{2}-2(1+h)+2\right)$.
Solution: The slope of the secant line is

$$
\frac{(1+h)^{2}-2(1+h)+2-1}{(1+h)-1}=\frac{\left(1+2 h+h^{2}\right)-2-2 h+2-1}{h}=\frac{h^{2}}{h}=h
$$

(c) (5) Find the limit as $h \rightarrow 0$ of your slope from part (b).

Solution: The limit is 0 .
(d) (5) What does your answer in part (c) tell you in terms of the graph $y=f(x)$, related lines, etc.?
Solution: It is the slope of the tangent line to the graph $y=x^{2}-2 x+2$ at $(1,1)$. The slope is 0 which means the tangent line is the horizontal line $y=1$.

