College of the Holy Cross, Fall Semester, 2017
 MATH 133, Midterm 1 Solutions
 Friday, September 22

1. (a) (10) Express the set of all x satisfying $|3 x-9| \leq 6$ as an interval or union of intervals.

Solution: Algebraically, this inequality says $-6 \leq 3 x-9 \leq 6$, so $3 \leq 3 x \leq 15$, so $1 \leq x \leq 5$. As an interval this is $[1,5]$. Geometrically, we could get the same result by dividing by 3 to get $|x-3| \leq 2$. The numbers at distance at most 2 along the number line from 3 are exactly $x \in[1,5]$ as before.
(b) (10) What is the domain of the function $f(x)=\frac{\sqrt{3-x}}{x}$? Any correct form is OK.

Solution: We must have $3-x \geq 0$, or $x \leq 3$ for the square root to be defined. We must also have $x \neq 0$ since we cannot divide by zero. These conditions define $(-\infty, 0) \cup(0,3]$. Another correct way to say this: all real $x \leq 3$, except $x=0$.
2. (20) The graph $y=f(x)$ and four graphs obtained by transforming it are shown in Figures 1 and 2. Match the given formulas with the corresponding graph.
(a) $y=f\left(\frac{1}{2} x\right): \underline{B}$ (horizonal stretching)
(b) $y=\frac{1}{2} f(x): \underline{D}$ (vertical compression) $y=f(2 x): \underline{C}$ (horizontal compression)
(d) Note that there is an extra graph that does not match any of the formulas. A is the Graph that does not match any formula. (It is actually $y=2 f(x)$ (vertical stretching)).
3. (a) (15) Complete the square: $q(x)=4 x^{2}-16 x+24$.

Solution: By the usual process,

$$
q(x)=4\left(x^{2}-4 x+6\right)=4\left((x-2)^{2}+2\right)=8+4(x-2)^{2} .
$$

(b) (5) What is the minimum value of $q(x)$? Solution: The smallest value attained by $q(x)$ is 8 since $4(x-2)^{2} \geq 0$ for all x.
4. The temperature $f(t)$ at a desert location varies sinusoidally from a low of $40^{\circ} \mathrm{F}$ at $t=0$ hours (midnight) to a high of $80^{\circ} \mathrm{F}$ at $t=12$ hours (noon). (See graph in Figure 3 , which shows the temperature over two complete days.)
(a) (6) What is the period of this sinusoidal oscillation? Answer: 24 hours

Figure 1: The graph $y=f(x)$
(A)

(B)

(D)

Figure 2: The transformed graphs

Figure 3: Graph of temperature as a function of time.
(b) (6) What is the amplitude? Answer: $\frac{1}{2}(80-40)=20$
(c) (8) Give a possible formula for f as a function of t.

Solution: Since the period starts at one of the minimum values, this looks like a cosine graph, with horizontal and vertical scaling, plus a vertical shift and reflection across the x-axis. The vertical shift can be found from the difference between the maximum and the amplitude: $80-20=60$. One form is

$$
f(t)=-20 \cos \left(\frac{2 \pi t}{24}\right)+60
$$

Another possibility (with horizontal shifting too by 6 hours to the right) would be

$$
f(t)=20 \sin \left(\frac{2 \pi(t-6)}{24}\right)+60
$$

0
5. You are traveling by horse along a straight line road starting from $x=0$ (miles) at time $t=0$ (hours). For the first hour, you move in the positive x-direction at 5 miles per hour. At $t=2$, you realize you have dropped an important item from your saddle bag. So you turn around and retrace your steps to 5 miles per hour. You find the item at $t=3$. Then you turn back around and continue at 5 miles per hour for an additional 2 hours.
(a) (10) Sketch the graph of your position x as a function of time t for $0 \leq t \leq 5$. Solution: The graph is shown in Figure 4 on the next page.
(b) (10) Give your position x as a piecewise-defined function of t.

Solution: Using the point-slope form for equation of lines, this is the function

$$
x(t)= \begin{cases}5 t & \text { if } 0 \leq t \leq 2 \\ -5 t+20 & \text { if } 2 \leq t \leq 3 \\ 5 t-10 & \text { if } 3 \leq t \leq 5\end{cases}
$$

6. Extra Credit. (10) A sample of a radioactive element is decaying over time. The mass present at time t is given by according to $M(t)=139 e^{-0.003 t}$ grams, where t is in months. When will the mass present reach 50 grams?

Solution: We want to solve the equation

$$
50=139 e^{-0.003 t}
$$

Figure 4: Figure for Question 6 (a)
for t. Divide by 139 first to get

$$
e^{-0.003 t}=\frac{50}{139} .
$$

Then taking natural logs of both sides gives

$$
-0.003 t=\ln \left(\frac{50}{139}\right) \Rightarrow t=\frac{\ln \left(\frac{50}{139}\right)}{-0.003} \doteq 340.8 \text { months. }
$$

