MATH 133 - Calculus with Fundamentals 1 Quiz 8 - December 3, 2015

Your Name: \qquad

Directions

Do all work in the space provided below or on the back of the second sheet. There are 30 total points possible. You may use a calculator but not any graphing features.

Questions

1) Both parts of this question refer to the function $f(x)=-x^{3}+3 x+1$
(a) (5) Compute $f^{\prime}(x)$ and find all of the critical points of f.
(b) (5) Find the maximum and minimum values of f on the closed interval $[-2,0]$.
2) Let $f(x)=x e^{-3 x}$
(a) (5) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) (5) Determine the interval(s) where $y=f(x)$ is concave up and the interval(s) and where $y=f(x)$ is concave down.

Figure 1: Plot of $y=f^{\prime}(x)$ for Problem 3
3) The graph above shows $y=f^{\prime}(x)$ for some function f (NOTE: this is the graph of the derivative $y=f^{\prime}(x)$, NOT $\left.y=f(x)\right)$.
(a) (3) What are the critical points of f in the interval $[-4,4]$?

Answer: $x=$ \qquad
(b) (2) At which x value(s) in this interval does f have a local maximum?

Answer: $x=$ \qquad
(c) (1) Explain briefly how you know your answer in (b) is correct.
(d) (2) On the interval $(-1,1)$, is the graph $y=f(x)$ concave up or concave down?

Answer: \qquad
(e) (2) How many points of inflection does $y=f(x)$ have in the interval $[-4,4]$, and what are the approximate x-values where they are located?

Answer: \qquad

