MATH 133 - Calculus with Fundamentals 1
Solutions for Quiz 7 - November 19, 2015

Questions

1) (a) (7) Find $\frac{d y}{d x}$ by implicit differentiation given that $x^{2} y^{3}-5 x y+x=1$.

Solution: Using implicit differentiation means we have to think of y as an implicitly defined function of x. This means that the $x^{2} y^{3}$ and $-5 x y$ terms are products of functions of x and must be differentiated by the product rule (and chain rule for the first):

$$
x^{2} \cdot 3 y^{2} \frac{d y}{d x}+2 x y^{3}-5 x \frac{d y}{d x}-5 y+1=0
$$

Then we take the terms without $\frac{d y}{d x}$ to the other side:

$$
x^{2} \cdot 3 y^{2} \frac{d y}{d x}-5 x \frac{d y}{d x}=5 y-2 x y^{3}-1
$$

Then factor out the $\frac{d y}{d x}$ on the left:

$$
\left(3 x^{2} y^{2}-5 x\right) \frac{d y}{d x}=5 y-2 x y^{3}-1
$$

and finally divide by the $3 x^{2} y^{2}-5 x$ to solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=\frac{5 y-2 x y^{3}-1}{3 x^{2} y^{2}-5 x} .
$$

(b) (3) Find the equation of the tangent line to the curve with the equation $x^{2} y^{3}-5 x y+x=1$ at $(x, y)=(0,1)$ using your answer from (a).
Solution: I goofed on this part. The point I meant was $(1,0)$, not $(0,1)$. As some of you noticed $\frac{d y}{d x}$ is not even defined at $(0,1)$ (and even worse, that point doesn't satisfy the equation of the curve). So I gave everyone full credit for this part since it was my mistake. Here's the way it would work with the correct point $(x, y)=(1,0)$: The slope is found by substituting $x=1$ and $y=0$ into the equation for $\frac{d y}{d x}$ from part (a):

$$
m=\frac{5 \cdot 0-2 \cdot 1 \cdot 0^{3}-1}{3 \cdot 1^{2} \cdot 0^{2}-5 \cdot 1}=\frac{1}{5}
$$

Then the tangent line is

$$
y=\frac{1}{5}(x-1)=\frac{1}{5} x-\frac{1}{5}
$$

2) Differentiate the following, but don't simplify:
(a)
(5) $f(x)=\ln (\cos (x)+\sin (3 x))$

Solution: By the rule $\frac{d}{d x} \ln (u)=\frac{1}{u} \cdot \frac{d u}{d x}$, which incorporates the chain rule (and then the chain rule again on the $\sin (3 x))$:

$$
f^{\prime}(x)=\frac{1}{\cos (x)+\sin (3 x)} \cdot(-\sin (x)+\cos (3 x) \cdot 3)
$$

(b) (5) $g(x)=\tan ^{-1}\left(e^{5 x}\right)+\sin ^{-1}\left(x^{2}\right)$

Solution: By the derivative rules for the inverse tangent

$$
\frac{d}{d x} \tan ^{-1}(u)=\frac{1}{1+u^{2}} \cdot \frac{d u}{d x}
$$

with $u=e^{5 x}$ and the inverse sine:

$$
\frac{d}{d x} \sin ^{-1}(u)=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}
$$

with $u=x^{2}$ (note that these incorporate the chain rule):

$$
g^{\prime}(x)=\frac{5 e^{5 x}}{1+e^{10 x}}+\frac{2 x}{\sqrt{1-x^{4}}} .
$$

General Comment: If you lost a lot of points on this one, carefully review the formulas used here. See the class handout sheet from November 13 for the clearest statements. These are also included (along with a lot of other formulas you will not be responsible for) in Sections 3.8 and 3.9 of the book.
3) (10) Water is being poured into a circular cylinder tank with constant radius $r=5$ meters. If the height of the water in the tank is increasing at a rate of 1 meter per minute, what is the rate of change of the volume of the water in the tank? (The volume of a circular cylinder of radius r and height h is $V=\pi r^{2} h$.)

Solution: The volume of water inside the tank is also a cylinder with constant radius $r=5$ and height increasing as the water is poured in. We have $V=\pi r^{2} h=25 \pi h$, so taking derivatives with respect to time:

$$
\frac{d V}{d t}=25 \pi \frac{d h}{d t}
$$

Since the height of the water in the tank is increasing at 1 meter per minute, $\frac{d h}{d t}=1$, and hence

$$
\frac{d V}{d t}=25 \pi \cdot 1=25 \pi \text { cubic meters per minute. }
$$

