MATH 133 – Calculus with Fundamentals 1 Quiz 3 – October 1, 2015

Your Name: _____

Directions

Do all work in the spaces provided below and on the back. There are 30 total points possible. You may use a calculator (but not any graphing features).

Questions

- 1) An object moves along a straight line path with position given by $x(t) = 2t^2 t + 4$ (t in seconds, x in feet).
 - (a) (5) What is the average velocity of the object over the interval [1, 4] of t-values?

(b) (5) The following table gives average velocities computed over the indicated intervals. Using this information, estimate the *instantaneous velocity* at t = 1.

interval	[1, 1.5]	[1, 1.05]	[1, 1.005]	[1, 1.0005]
ave.vel.	4	3.1	3.01	3.001

Instantaneous velocity:

2) (10) Complete the following table and use your results to determine an estimate of the limit $\lim_{x\to 2} \frac{x-2}{x^2-3x+2}$. Use at least 5 decimal places in all calculations for these.

x	2.1	2.01	2.001	1.999	1.99	1.9
x-2						
$\overline{x^2 - 3x + 2}$						

 $\lim_{x \to 2} \frac{x-2}{x^2 - 3x + 2} \doteq ____$

Figure 1: Figure for Question 3

- 3) Refer to the graph in Figure 1 and fill in the answers to these questions.
 - (a) (5) From the graph, $\lim_{x \to 1} f(x) =$ _____.
 - (b) (5) From the graph, $\lim_{x \to 3^+} f(x) =$ _____ and $\lim_{x \to 3^-} f(x) =$ _____. Does $\lim_{x \to 3} f(x)$ exist? _____