MATH 133 - Calculus with Fundamentals 1
Problem Set 8, Part B Solutions - December 1, 2017

Section 4.4

22. Assuming the graph is $y=f(x)$, there is just one inflection point at $x=c$. The graph of $f(x)$ is concave down on ($0, c$) and concave up on (c, g).
23. Now assuming the graph is $y=f^{\prime}(x)$, there are inflection points for $y=f(x)$ at $x=b$ and $x=e$. The graph of $f(x)$ is concave up on $(0, b)$ and (e, g) (the intervals where $f^{\prime}(x)$ is increasing) and the graph of $f(x)$ is concave down on (b, e) (the interval where $f^{\prime}(x)$ is decreasing).
24. Now assuming the graph is $y=f^{\prime \prime}(x)$, there inflection points for $y=f(x)$ at the points where $f^{\prime \prime}(x)$ changes sign, so at $x=a, d, f$. The graph $y=f(x)$ is concave up on the intervals where $f^{\prime \prime}(x)>0$ (that is, where the graph $y=f^{\prime \prime}(x)$ is above the x-axis), so (a, d) and (f, g). The graph $y=f(x)$ is concave down on the intervals where $f^{\prime \prime}(x)<0$ (that is, where the graph $y=f^{\prime \prime}(x)$ is below the x-axis), so ($0, a$) and (d, f).

Section 4.7

37. The blue rectangle in the figure is fixed with sides of length H, L. The red rectangle depends on the angle θ shown, and has area determined like this. First look at the triangle at the top. This is a right triangle with hypotenuse equal to L and the angle θ as marked. Hence the longer leg as shown (the adjacent side) has length $L \cos (\theta)$, while the other one has length $L \sin (\theta)$. The triangle at the bottom is congruent to this one, so it has the same side lengths. In the same way, the smaller triangles on the sides have hypotenuse H and legs $H \cos (\theta)$ and $H \sin (\theta)$. Now the whole red rectangle is dissected into four triangles and the blue rectangle, so its total area is

$$
A=H L+2 \cdot \frac{1}{2} L^{2} \cos (\theta) \sin (\theta)+2 \cdot \frac{1}{2} H^{2} \cos (\theta) \sin (\theta) .
$$

This simplifies to

$$
A=H L+\left(L^{2}+H^{2}\right) \cos (\theta) \sin (\theta)
$$

To find the maximum area, we differentiate with respect to θ, set $=0$ and solve:

$$
\frac{d A}{d \theta}=\left(L^{2}+H^{2}\right)\left(\cos ^{2}(\theta)-\sin ^{2}(\theta)\right)=0
$$

when $\cos ^{2}(\theta)=\sin ^{2}(\theta)$, or $\cos (\theta)= \pm \sin (\theta)$. It is clear from the diagram that only $\theta \in[0, \pi / 2]$ are reasonable solutions, so there is just one relevant critical point, namely the solution of $\cos (\theta)=$ $\sin (\theta)$ in that interval: $\theta=\frac{\pi}{4}$. This gives a maximum of the area A by the First Derivative Test: If $0<\theta<\pi / 4$, then $\cos (\theta)>\sin (\theta)$, so $\frac{d A}{d \theta}>0$, while if $\pi / 4<\theta<\pi / 2, \cos (\theta)<\sin (\theta)$ and $\frac{d A}{d \theta}<0$. (You could also use the Second Derivative Test or the A function values at $\theta=0, \pi / 4, \pi / 2$ to get the same conclusion.) Hence the maximum area is

$$
A=H L+\left(L^{2}+H^{2}\right) \cos (\pi / 4) \sin (\pi / 4)=H L+\frac{1}{2}\left(L^{2}+H^{2}\right)
$$

