MATH 133 - Calculus with Fundamentals 1
Problem Set 7B Solutions, November 17, 2017
Section 3.8
70. To find $\frac{d y}{d x}$, we use implicit differentiation:

$$
2\left(x^{2}+y^{2}-4 x\right)\left(2 x+2 y \frac{d y}{d x}-4\right)=4 x+4 y \frac{d y}{d x}
$$

So solving for $\frac{d y}{d x}$,

$$
\frac{d y}{d x}=\frac{4 x+2(4-2 x)\left(x^{2}+y^{2}-4 x\right)}{4 y\left(x^{2}+y^{2}-4 x\right)-4 y}
$$

The four y-coordinates for the intersections with the line $x=1$ are found by substituting into the original equation:

$$
\left(y^{2}-3\right)^{2}=2\left(1+y^{2}\right)
$$

and then rearranging and solving for y :

$$
y^{4}-6 y^{2}+9=2+2 y^{2}, \quad \text { so } \quad y^{4}-8 y^{2}+7=0
$$

This factors as

$$
\left(y^{2}-1\right)\left(y^{2}-7\right)=0
$$

so the solutions are $y= \pm 1, y= \pm \sqrt{7}$. Then at $(x, y)=(1,1)$ for instance, we have

$$
\frac{d y}{d x}=\frac{4+2(2)(-2)}{4(-2)-4}=\frac{1}{3}
$$

so the tangent line at $(1,1)$ is

$$
y-1=\frac{1}{3}(x-1)
$$

The other three are found similarly:

- At $(x, y)=(1,-1), \frac{d y}{d x}=\frac{-1}{3}$ and the tangent line is

$$
y+1=\frac{-1}{3}(x-1)
$$

- At $(x, y)=(1, \sqrt{7}), \frac{d y}{d x}=\frac{5 \sqrt{7}}{21}$ (after simplifying), so the tangent line is

$$
y-\sqrt{7}=\frac{5 \sqrt{7}}{21}(x-1)
$$

- Finally, at $(x, y)=(1,-\sqrt{7}), \frac{d y}{d x}=-\frac{5 \sqrt{7}}{21}$, and the tangent line is

$$
y+\sqrt{7}=-\frac{5 \sqrt{7}}{21}(x-1)
$$

16. In the figure given with the problem, let x be the distance from the intersection to the car as a function of t and let z be the distance from the car to the house. By the Pythagorean theorem,

$$
2^{2}+x^{2}=z^{2}
$$

So taking the derivative with respect to t (implicitly)

$$
2 x \frac{d x}{d t}=2 z \frac{d z}{d t} .
$$

At the instant of time the problem is asking about, $x=6$ and $\frac{d x}{d t}=80$. From the Pythagorean Theorem, $4+36=40=z^{2}$, so $z=\sqrt{40} \doteq 6.32$. Hence

$$
12 \cdot 80 \doteq 12.64 \frac{d z}{d t} \Rightarrow \frac{d z}{d t} \doteq \frac{960}{12.64} \doteq 75.95
$$

(units are km/hr).

