MATH 133 - Calculus with Fundamentals 1
Problem Set 4B Solutions, October 6, 2017

Section 2.3

40. By the Limit Sum Law,

$$
\lim _{x \rightarrow-4}(2 f(x)+3 g(x))=\lim _{x \rightarrow-4} 2 f(x)+\lim _{x \rightarrow-4} 3 g(x)
$$

Then by the Limit Product Law and the given information, this equals

$$
\begin{aligned}
& =\left(\lim _{x \rightarrow-4} 2\right) \cdot\left(\lim _{x \rightarrow-4} f(x)\right)+\left(\lim _{x \rightarrow-4} 3\right) \cdot\left(\lim _{x \rightarrow-4} g(x)\right) \\
& =2 \cdot 3+3 \cdot 1 \\
& =9 .
\end{aligned}
$$

Section 2.4

64. Any graph $y=f(x)$ for which

- $\lim _{x \rightarrow 2^{-}} f(x)=f(2)$, but $\lim _{x \rightarrow 2^{+}} f(x)$ is something other than $f(2)$ (it could be a different number - so a jump discontinuity at $x=2$ or even an infinite discontinuity from the right side), and
- $\lim _{x \rightarrow 3^{+}} f(x)=f(3)$, but $\lim _{x \rightarrow 3^{-}} f(x)$ is something other than $f(3)$ (it could be a different number - so a jump discontinuity at $x=2$ or even an infinite discontinuity from the right side).
is OK. One example is shown in Figure 1.

66. This one is similar to 64 - any graph for which

- $\lim _{x \rightarrow 1^{+}} f(x)=f(1)$, but $\lim _{x \rightarrow 1^{-}} f(x)$ is something other than $f(1)$, and
- $\lim _{x \rightarrow 2^{-}} f(x)=f(2)$, but $\lim _{x \rightarrow 2^{+}} f(x)$ is something other than $f(2)$,
- $\lim _{x \rightarrow 3^{-}} f(x)$ and $\lim _{x \rightarrow 3^{+}} f(x)$ both different from $f(3)$. This could be because at least one of the one-sided limit does not exist (e.g. infinite discontinuities), or because $f(x)$ has a removable singularity at $x=3$, with $f(3)$ different from the one-sided limits.)
is OK. One example is shown in Figure 2.
Section 2.5/

8. Factor the top and cancel $x-8$ to get a determinate limit:

$$
\begin{aligned}
\lim _{x \rightarrow 8} \frac{x^{3}-64 x}{x-8} & =\lim _{x \rightarrow 8} \frac{x(x+8)(x-8)}{(x-8)} \\
& =\lim _{x \rightarrow 8} x(x+8)=128 .
\end{aligned}
$$

Figure 1: $y=f(x)$ for Question 2.4/64.

Figure 2: $y=f(x)$ for Question 2.4/66.
19. Put the terms on the top over a common denominator, simplify the fraction, and work to cancel a factor of h top and bottom:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{(h+2)^{2}}-\frac{1}{4}}{h}=\lim _{h \rightarrow 0} \frac{\frac{4-(h+2)^{2}}{4(h+2)^{2}}}{h} & \\
& =\lim _{h \rightarrow 0} \frac{4-(h+2)^{2}}{4 h(h+2)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{4-\left(h^{2}+4 h+4\right)}{4 h(h+2)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-h(h+4)}{4 h(h+2)^{2}} \quad(\text { now cancel } h) \\
& =\lim _{h \rightarrow 0} \frac{-(h+4)}{4(h+2)^{2}} \\
& =\frac{-1}{4} .
\end{aligned}
$$

22. Multiply by the conjugate radical top and bottom, simplify, cancel $x-8$ and evaluate:

$$
\begin{aligned}
\lim _{x \rightarrow 8} \frac{\sqrt{x-4}-2}{x-8} & =\lim _{x \rightarrow 8} \frac{(\sqrt{x-4}-2)(\sqrt{x-4}+2)}{(x-8)(\sqrt{x-4}+2)} \\
& =\lim _{x \rightarrow 8} \frac{(x-4)-4}{(x-8)(\sqrt{x-4}+2)} \\
& =\lim _{x \rightarrow 8} \frac{(x-8)}{(x-8)(\sqrt{x-4}+2)} \\
& =\lim _{x \rightarrow 8} \frac{1}{\sqrt{x-4}+2} \\
& =\frac{1}{4} .
\end{aligned}
$$

