MATH 133 - Calculus with Fundamentals 1
Problem Set 2B Solutions, September 15, 2017
Note: Because of the confusion in class on Wednesday, credit was given for either 1.3/39 or 1.4/39. Solutions for both are shown below.
$1.3 / 30$. With $f(x)=|x|$ and $g(\theta)=\sin (\theta)$,

$$
(f \circ g)(\theta)=f(g(\theta))=|\sin (\theta)| .
$$

The domain is the set of all real θ because any such θ is in the domain of g and then $g(\theta)$ is in the domain of f. On the other hand,

$$
(g \circ f)(x)=\sin (|x|)
$$

The domain is the set of all real x because any such x is in the domain of f and then $f(x)$ is in the domain of g.
$1.3 / 36$. When $x<0$, we get a portion of a line of slope 1 and y-intercept +1 ; when $x \geq 0$, we get a portion of a line of slope -1 and y-intercept +1 . The graph is shown in Figure 1.
$1.3 / 39$. Starting at $t=t_{0}$, the time 10 years later is $t=t_{0}+10$. We have, using rules for exponents:

$$
\begin{aligned}
P\left(t_{0}+10\right) & =30 \cdot 2^{(0.1)\left(t_{0}+10\right)} \\
& =30 \cdot 2^{(0.1) t_{0}+1} \\
& =30 \cdot 2^{(0.1) t_{0}} \cdot 2 \\
& =2 P\left(t_{0}\right)
\end{aligned}
$$

This shows the population doubles in the time from t_{0} to $t_{0}+10$.

$$
\begin{aligned}
P\left(t_{0}+1 / k\right) & =a \cdot 2^{k\left(t_{0}+1 / k\right)} \\
& =a \cdot 2^{k t_{0}+1} \\
& =a \cdot 2^{k t_{0}} \cdot 2 \\
& =2 P\left(t_{0}\right)
\end{aligned}
$$

So the population doubles after $1 / k$ years.
$1.4 / 39$. This looks like the cos graph, but with amplitude 3 and period 4π, so an equation would be

$$
y=3 \cos (x / 2)
$$

(there is no vertical shift in this case). There are other correct ways to write this of course. For instance if you think of the part of the graph between $x=-\pi$ and $x=3 \pi$ as the period, then its a horizontally shifted and vertically stretched sine graph with equation

$$
y=3 \sin ((x+\pi) / 2) .
$$

Figure 1: The graph $y=f(x)$ in 1.3/36
1.4/40. I saw this first as another cosine graph, but reflected across the x-axis. The amplitude is 2 and the period is $4 \pi / 3$, so

$$
y=-2 \cos (3 x / 2)
$$

is one possible equation. There are others too as in the solution for 39 above.
$1.4 / 59$. By the Law of Cosines,

$$
P Q^{2}=10^{2}+8^{2}-2 \cdot 10 \cdot 8 \cdot \cos (7 \pi / 9) \doteq 100+64-160 \cdot(-.76604) \doteq 286.57
$$

So $P Q \doteq \sqrt{286.57} \doteq 16.928$.

