MATH 133 - Calculus with Fundamentals 1
Problem Set 1B Solutions, September 8, 2017
1.1/71. Given: The function $f(x)$ has domain $[4,8]$ and range $[2,6]$.
(a) The function $f(x)+3$ has domain $[4,8]$ (the same as $f(x))$ and range [5, 9], since $2 \leq f(x) \leq 6$ is equivalent to $5 \leq f(x)+3 \leq 9$.
(b) The function $f(x+3)$ has domain $[1,5]$ since $4 \leq x+3 \leq 8$ is the same as $1 \leq x \leq 5$. The range is the same as the range of $f(x)-[2,6]$.
(c) The function $f(3 x)$ has domain $[4 / 3,8 / 3]$ since $4 \leq 3 x \leq 8$ is equivalent to $4 / 3 \leq x \leq 8 / 3$. The range is $[2,6]$, the same as for $f(x)$.
(d) The function $3 f(x)$ has domain $[4,8]$, the same as $f(x)$. The range is $[6,18]$, since $2 \leq f(x) \leq 6$ is equivalent to $6 \leq 3 f(x) \leq 6$.
77. Another way to state the definition is

$$
\begin{aligned}
f(x) & = \begin{cases}x & \text { if } x \geq 2-x \\
2-x & \text { if } 2-x>x\end{cases} \\
& = \begin{cases}x & \text { if } x \geq 1 \\
2-x & \text { if } x<1\end{cases}
\end{aligned}
$$

This shows the graph has the form given in Figure 1 on the back of this page. From this, we see that this is the graph $y=|x|$, shifted to the right one unit and up one unit. Another formula is

$$
y=|x-1|+1 .
$$

$1.2 / 22$. The line contains the points $(0, b)$ and $(a, 0)$. This means the slope is

$$
m=\frac{b-0}{0-a}=-\frac{b}{a} .
$$

The point $(0, b)$ is the $y$-intercept, so the equation of the line has the slope-intercept form:

$$
y=-\frac{b}{a} x+b .
$$

From this, we can add $\frac{b}{a} x$ to both sides to obtain

$$
\frac{b}{a} x+y=b
$$

then divide both sides by $b$ to obtain

$$
\frac{x}{a}+\frac{y}{b}=1 .
$$



Figure 1: The graph $y=f(x)$ in 1.1/77

This is the form we wanted.
1.2/48. Saying $f(x)=A x^{2}+B x+C$ has a double root means that its factored form is $A(x-r)^{2}$ for some $r$ (equivalently, if you use the quadratic formula to solve $A x^{2}+B x+C=0$, then the $B^{2}-4 A C$ under the radical sign is zero and you only get one root). Graphically, that means the parabola $y=A x^{2}+B x+C$ is "just touching" the $x$-axis at $x=r$. (Graph $y=(x-2)^{2}$ to see exactly what that looks like.) It is statement (a) that is correct, since any parabola can be shifted up or down by a unique constant $c$ to make it just touch the $x$-axis at one point. (b) cannot be true because shifting the parabola left or right does not change the number of times it crosses the $x$-axis; it just changes the locations of the points (if there are any) where the parabola crosses the $x$-axis.

