College of the Holy Cross, Fall Semester, 2017
 MATH 133, Solutions for Midterm 4
 Thursday, December 7

1. Find $\frac{d y}{d x}$; do not simplify:
A) (7.5) $y=\frac{\ln (x)+x^{2}}{\cos (x)}$

Solution: By the Quotient Rule and the derivative rules for cos and \ln,

$$
\frac{d y}{d x}=\frac{\cos (x)(1 / x+2 x)-\left(\ln (x)+x^{2}\right)(-\sin (x))}{\cos ^{2}(x)}
$$

B) (7.5) $y=\sin ^{-1}(\sqrt{x})$

Solution: By the Chain Rule,

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \cdot \frac{1}{2 \sqrt{x}}
$$

C) (10) $x^{3} y^{2}-4 y+x^{4}=0$ (use implicit differentiation)

Solution: We have

$$
x^{3} \cdot 2 y \frac{d y}{d x}+3 x^{2} y^{2}-4 \frac{d y}{d x}+4 x^{3}=0
$$

So

$$
\frac{d y}{d x}=\frac{-3 x^{2} y^{2}-4 x^{3}}{2 x^{3} y-4}
$$

2. (20) A stationary observer watches a weather balloon being launched from a point 600 feet away from her position. The line of sight distance from the observer to the balloon is changing at a rate of 20 feet per second. How fast is the height of the balloon changing when the balloon is 400 feet above the ground?

Solution: Let z be the distance from the observer to the balloon, and y be the height of the balloon above the ground (both functions of time). We have $z^{2}=600^{2}+y^{2}$ by the Pythagorean Theorem. Hence differentiating with respect to time:

$$
2 z \frac{d z}{d t}=2 y \frac{d y}{d t}
$$

At the given time $y=400$, so $z=\sqrt{600^{2}+400^{2}} \doteq 721.1$. We are given $\frac{d z}{d t}=20$, so

$$
2 \cdot 721.1 \cdot 20=2 \cdot 400 \cdot \frac{d y}{d t}
$$

Then

$$
\frac{d y}{d t}=\frac{721.1 \cdot 20}{400} \doteq 36.1
$$

(feet per second.)

Figure 1: $y=f^{\prime}(x)$ for Problem 3
3. All parts of this question refer to the plot in Figure 1, which is $y=f^{\prime}(x)$ for some function $f(x)$. Assume the whole domain of the functions $f(x)$ and $f^{\prime}(x)$ is the interval $[-3,3]$ shown.
(A) (10) Find the critical points of $f(x)$ in the interval shown:

Answer: $x=-1,1$ (where the graph of $f^{\prime}(x)$ crosses the x-axis.
(B) (5) Briefly, in your own words, state how the First Derivative Test distinguishes between local maxima, local minima, and critical points that are neither:
Answer: If the sign of f^{\prime} changes from + to - at the critical point, then f has a local maximum there; if the sign of f^{\prime} changes from - to + , then f has a local minimum; if the sign of f^{\prime} does not change, then f has neither a local maximum nor a local minimum.
(C) (5) Identify each of the points you found in part (A) as a local maximum, local minimum, or neither:
Answer: f has a local minimum at $x=-1 ; f$ has a local maximum at $x=1$.
(D) (5) Find all the inflection points of $f(x)$.

Answer: Concavity of f changes at $x=0$, where f^{\prime} changes from increasing to decreasing.
(E) (5) Over which intervals is $y=f(x)$ concave up? concave down?

Concave up: $x<0$ where f^{\prime} is increasing; Concave down: $x>0$ where f^{\prime} is decreasing.
4. A rectangular poster is to have total area 600 square inches, including blank 1 inch wide margins on all four sides of a central printed area. What overall dimensions will maximize the printed area? The parts of this problem will lead you to the answer.
(A) (4) Draw a diagram clearly showing the whole poster, the central printed area, and the 1 inch wide blank margins.

Solution: Appropriate diagram showing one rectangle inside another one with 1-inch margins on all four sides of the inner regions is OK.
(B) (4) Call the horizontal side of the whole poster x and the vertical side of the whole poster y.
Solution: Area of whole poster is $x y=600$; area of printed region is $A P=$ $(x-2)(y-2)$ (subtract one inch for the margins on top and bottom, one inch for the margins on left and right).
(C) (4) Solve for y in terms of x using the area of the whole poster and substitute into the area of the printed region.
Solution: $y=\frac{600}{x}$. So

$$
A P=(x-2)\left(\frac{600}{x}-2\right)=604-\frac{1200}{x}-2 x
$$

(D) (5) Determine a critical point of the area function.

Solution: $A P^{\prime}(x)=\frac{1200}{x^{2}}-2=0$ when $x^{2}=600$, or $x=10 \sqrt{6} \doteq 24.49$.
(E) (4) How do you know your critical point is a maximum of the area?

Solution: $A P^{\prime \prime}=\frac{-2400}{x^{3}}$. When you plug in $x=10 \sqrt{6}$, the result is negative, so $A P(x)$ has a maximum there by the Second Derivative Test. This is the only critical point, so it must be an overall maximum too.
(F) (4) What are the dimensions x and y of the poster of maximum printed area?

Solution:

$$
x=\sqrt{600} \doteq 24.49 ; \quad y=\frac{600}{\sqrt{600}}=\sqrt{600}
$$

The poster of maximum area is a square.

