MATH 133 - Calculus with Fundamentals 1
Solutions for Quiz 2 - September 15, 2017

1) (15) In the space below, plot the piece-wise defined function

$$
f(x)= \begin{cases}x+3 & \text { if }-1<x<1 \\ x^{2}-4 x+2 & \text { if } 1 \leq x<3\end{cases}
$$

Assume the domain is just the interval $(-1,3)$ indicated.

Solution:

The portion of the graph between $x=-1$ and $x=1$ is a part of the straight line $y=x+3$. This has slope $m=1$ and y-intercept 3 , so it goes through the point $(0,3)$. We only get the part of that line starting at $(-1,2)$ and ending at $(1,4)$. The endpoints are shown with open circles because $x=-1$ and $x=1$ are not included in this part of the domain.
At $x=1$, the formula changes to $f(x)=x^{2}-4 x+2$. Completing the square, we have that half of the coefficient of the x is $-4 / 2=-2$ and $(x-2)^{2}=x^{2}-4 x+4$. Therefore $x^{2}-4 x+2=(x-2)^{2}-2$. Therefore, this portion of the graph is a piece of a shifted parabola. The shifts are 2 units to the right and 2 units down. The vertex (lowest point) is at $(2,-2)$. As for the line, we only get the part of the parabola for $1 \leq x<3$. See Figure 1 on the back.
2) (15) Find a formula for the sinusoidal function plotted in Figure 2 on the back.

Solution:

If we think of placing the start of period at $x=0$, then this looks like a cosine graph. The maximum y-value is 0 and the minimum is -8 , so the amplitude is $\frac{0-(-8)}{2}=4$. The vertical shift is the distance $0-4=-4$. The period of the oscillation is π, so the multiplier B in the general formula $y=A \cos (B x)+C$ is $B=\frac{2 \pi}{\pi}=2$. So one formula is

$$
y=4 \cos (2 x)-4
$$

(There are other correct ones too, but this one is the simplest!)

Figure 1: $y=f(x)$ from question 1.

Figure 2: A sinusoidal function

