MATH 133 – Calculus with Fundamentals 1 More Practice on Sinusoids – September 18, 2017

Suggestion

Try at least a few of the following problems before consulting the solutions that will be posted on the course homepage.

Figure 1: The graph $y = 4\sin(10x) - 1$ from I (A).

I. Plot each of the following sinusoid graphs by determining the amplitude, period, and vertical shift:

(A) $y = 4\sin(10x) - 1$. Show the portion of the graph between x = 0 and $x = 2\pi/5$. Solution: Amplitude is 4, vertical shift is -1 and $\frac{2\pi}{\text{period}} = 10$, so the period is $\frac{\pi}{5}$.

!

- (B) $y = 2\cos(\pi x) + 2$. Show the portion of the graph between x = 0 and x = 4. Solution: Amplitude is 2, period is $\frac{2\pi}{\pi} = 2$, vertical shift is 2. There are two complete periods for $0 \le x \le 4$.
- (C) $y = -3\sin(x) + 4$. Show the portion of the graph between $x = -2\pi$ and $x = 2\pi$. Solution: The amplitude is 3, but the -3 means the graph is also reflected across the x-axis before it is shifted up by 4. The period is 2π , as for the standard $\sin(x)$ graph.
- II. Find possible formulas for each of the following sinusoidal graphs (starting on back):

Figure 2: The graph $y=2\cos(\pi x)+2$ from I (B).

Figure 3: The graph $y = -3\sin(x) + 4$ from I (C).

Figure 4: Sinusoid II (A) is $y = 2\sin(4x) + 1$

Figure 5: Sinusoid II (B) is $y = 3\cos(\pi x) - 5$

Figure 6: Sinusoid II (C) is $y = -4\sin(3x)$

Figure 7: Sinusoid II (D) is $y = \sin(2\pi x) + 3$

Figure 8: Sinusoid II (E) – more challenging (!) is $y = 3\sin(2(x-\pi/4)) + 1$