MATH 133 - Calculus with Fundamentals 1
Practice on Compositions of Functions
September 8, 2017

Background

Function composition is basically a fancy name for "plugging one function into another function." The slightly tricky thing to remember is that there are two ways to do this with two functions:

1. $f \circ g$ means "plug $g(x)$ into f ": $(f \circ g)(x)=f(g(x))$,
2. $g \circ f$ means "plug $f(x)$ into g ": $(g \circ f)(x)=g(f(x))$.

Questions

1) For each of the following pairs of functions f, g, compute both compositions $f \circ g$ and $g \circ f$.
(a) $f(x)=x^{2}+4 x+5, g(x)=\sqrt{x}$
(b) $f(x)=\frac{1}{x^{2}+1}, g(x)=\cos (x)$
(c) $f(x)=x+\frac{1}{x}, g(x)=f(x)$.
2) Express each of the following functions $F(x)$ as $F=f \circ g$ for some functions f, g :
(a) $F(x)=\sqrt{1-x^{2}}$
(b) $F(x)=2^{x^{2}}$
(c) $F(x)=\frac{1}{x^{2}+3 x+2}$
3) Recall our "rule of thumb" on domains: If $f(x)$ is given by a formula, then unless stated otherwise we take the domain to be the set of all real x that yield a well-defined result in the formula. What are the domains of the functions F in question 2?
