MATH 133 – Calculus with Fundamentals 1 The Derivative of a Function, Continued October 17, 2017

Background

We will now concentrate on finding general formulas for derivatives.

Questions

- (0) Use the definition to compute f'(a) if f is the linear function f(x) = 5x + 3. Does your answer make sense in terms of f'(a) as the slope of the tangent line?
- (1) Compute f'(a)-the derivative at a general x = a for $f(x) = x^2$.
- (2) Compute f'(a)-the derivative at a general x = a for $f(x) = x^3$.
- (3) Compute f'(a)-the derivative at a general x = a for $f(x) = \sqrt{x}$. Here there is a restriction on which a "work." What is that restriction? Does this make sense, thinking of the graph $y = \sqrt{x}$? (Note: this is part of the parabola with equation $x = y^2$.)
- (4) Compute f'(a)-the derivative at a general x = a for $f(x) = \frac{1}{x}$. Does your formula make sense, thinking of the shape of the graph $y = \frac{1}{x}$? In particular, what is true about f'(a) if a is very close to zero? And what about a very large in absolute value?
- (5) Can you see a general pattern in all of these examples? Think about writing \sqrt{x} and $\frac{1}{x}$ as powers. Do they fit the same pattern?