MATH 133 - Calculus with Fundamentals 1
The Derivative of a Function, Continued October 17, 2017

Background

We will now concentrate on finding general formulas for derivatives.

Questions

(0) Use the definition to compute $f^{\prime}(a)$ if f is the linear function $f(x)=5 x+3$. Does your answer make sense in terms of $f^{\prime}(a)$ as the slope of the tangent line?
(1) Compute $f^{\prime}(a)$-the derivative at a general $x=a$ for $f(x)=x^{2}$.
(2) Compute $f^{\prime}(a)$-the derivative at a general $x=a$ for $f(x)=x^{3}$.
(3) Compute $f^{\prime}(a)$-the derivative at a general $x=a$ for $f(x)=\sqrt{x}$. Here there is a restriction on which a "work." What is that restriction? Does this make sense, thinking of the graph $y=\sqrt{x}$? (Note: this is part of the parabola with equation $x=y^{2}$.)
(4) Compute $f^{\prime}(a)$-the derivative at a general $x=a$ for $f(x)=\frac{1}{x}$. Does your formula make sense, thinking of the shape of the graph $y=\frac{1}{x}$? In particular, what is true about $f^{\prime}(a)$ if a is very close to zero? And what about a very large in absolute value?
(5) Can you see a general pattern in all of these examples? Think about writing \sqrt{x} and $\frac{1}{x}$ as powers. Do they fit the same pattern?

