MATH 133 - Calculus with Fundamentals 1

Trigonometric Limits
October 6, 2017

Background

In today's video, we saw an additional technique for evaluating limits called the "Squeeze Theorem" and the very important limit:

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1 \tag{1}
\end{equation*}
$$

Recall that the Squeeze Theorem says: Assume $l(x) \leq f(x) \leq u(x)$ on some interval containing $x=c$ (except possibly at $x=c$) and $\lim _{x \rightarrow c} l(x)=\lim _{x \rightarrow c} u(x)=L$ (we might say " f is squeezed by l and u at $x=c "$ to describe this). Then $\lim _{x \rightarrow c} f(x)$ exists and equals L as well.

Questions

Evaluate the following limits using (1):
(1)

$$
\lim _{t \rightarrow 0} \frac{\sin (t)}{8 t}
$$

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\sin (8 t)}{t} \tag{2}
\end{equation*}
$$

(Hint: For this one let $u=8 t$ and convert the t in the denominator to an equivalent expression in terms of u. Note that $t \rightarrow 0$ implies $u=8 t \rightarrow 0$ also.)

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\sin (3 t)}{\sin (5 t)} \tag{3}
\end{equation*}
$$

(Hint: Rewrite as follows:

$$
\frac{\sin (3 t)}{\sin (5 t)}=\frac{\frac{\sin (3 t)}{t}}{\frac{\sin (5 t)}{t}},
$$

then proceed as in question (2).

