MATH 133 - Calculus with Fundamentals 1
Solution for 4.2/74 from Problem Set 8 - Part B
December 5, 2015

- The formula for the concentration is given as

$$
C(t)=\frac{.016 t}{t^{2}+4 t+4}
$$

- But the problem becomes much simpler if you rewrite this as

$$
C(t)=(.016) \cdot \frac{t}{(t+2)^{2}}
$$

- Note: I pulled the constant factor .016 out and factored the denominator noticing that it is a perfect square.
- We want to find the maximum and minimum values of this function on the interval $[0,8]$.
- First we differentiate $C(t)$ using the quotient rule, simplify, and then set the derivative equal to find the critical points:

$$
C^{\prime}(t)=(.016) \cdot \frac{(t+2)^{2} \cdot 1-t \cdot 2(t+2)}{(t+2)^{4}}=(.016) \cdot \frac{(t+2)(2-t)}{(t+2)^{4}}=(.016) \cdot \frac{2-t}{(t+2)^{3}},
$$

so $C^{\prime}(t)=0$ when $t=2$.

- Now we compute:

$$
\begin{aligned}
C(0) & =0 \\
C(2) & =\frac{.032}{16}=.002 \\
C(8) & =\frac{.128}{100}=.00128 .
\end{aligned}
$$

- So the maximum value is $C(2)=.002$ and the minimum value is $C(0)=0$.

Some comments:
(a) A lot of people got very tied up in dealing with the "complicated" decimal number coefficients that you get if you don't start out by pulling out the constant factor .016. Don't forget the constant multiple rule for derivatives:

$$
\frac{d}{d x}(k f(x))=k f^{\prime}(x) .
$$

In words, the derivative of a constant k times a function is the same constant k times the derivative of the function. You can (and usually should) do something like the above whenever you can pull a constant factor out of a whole function you need to differentiate.
(b) If you don't factor the denominator, you will get something like this when you apply the quotient rule:

$$
C^{\prime}(t)=(.016) \cdot \frac{\left(t^{2}+4 t+4\right) \cdot 1-t(2 t+4)}{\left(t^{2}+4 t+4\right)^{2}}=(.016) \frac{-t^{2}+4}{\left(t^{2}+4 t+4\right)^{2}}
$$

This makes it look as though both solutions of $-t^{2}+4=0$, namely, $t= \pm 2$ are critical points. However, the root $t=-2$ is not a critical point because it is not in the domain of the original $C(t)$ (the function $C(t)$ has an infinite discontinuity - a vertical asymptote - there). Check the definition of critical points on page 202 of the text book - critical points of a function are points where the function is defined, but where either the derivative is zero, or the derivative is undefined. And in any case, $t=-2$ is not in the interval $[0,8]$ we are interested in, so that should be ignored.

