
MATH 133 – Calculus with Fundamentals 1
Exam 4 Solutions for Sample/Practice Problems

November 28, 2017

I. Find y′; simplify.

(A)

y = ln(x)

(
x7 − 4√

x

)
Solution: Rewrite the function as ln(x)(x7− 4x−1/2). Then by the product rule and the
derivative formula for the natural logarithm:

y′ = ln(x)(7x6 + 2x−3/2) + (x7 − 4x−1/2) · 1

x
= ln(x)(7x6 + 2x−3/2) + x6 − 4x−3/2.

(B)
y = sin−1(e2x + 2)

Solution: By the derivative formula for the inverse sine and the chain rule:

y′ =
1√

1− (e2x + 2)2
· 2e2x.

(C)

y =
ln(x+ 1)

3x4 − 1

Solution: By the quotient rule and the derivative formula for the natural logarithm:

y′ =
(3x4 − 1) · 1

x+1 − ln(x+ 1) · 12x3

(3x4 − 1)2
.

(D)

y =
sin(x)

1 + cos(x)

Solution: By the quotient rule:

y′ =
(1 + cos(x)) cos(x)− sin(x)(− sin(x))

(1 + cos(x))2
=

1

1 + cos(x)

(if you use a trig indentity to simplify).

(E)
y = tan−1(x2 + x)

Solution: By the derivative formula for the inverse tangent and the chain rule:

y′ =
1

1 + (x2 + x)2
· (2x+ 1).
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(F) Using implicit differentiation:

xy2 − 3y3 + 2x4 − 4xy = 2

Solution: By the implicit differentiation method (treating y as an implicitly defined
function of x) we get:

2xyy′ + y2 − 9y2y′ + 8x3 − 4xy′ − 4y = 0.

Solving for y′, we get

y′ =
−y2 − 8x3 + 4y

2xy − 9y2 − 4x

(G) Find the equation of the line tangent to the curve from (F) at (x, y) = (1, 0)

Solution: At (x, y) = (1, 0), we have y′ = −8/− 4 = 2. So the tangent line is y = 2(x− 1) or
y = 2x− 2.

II. The quantity of a reagent present in a chemical reaction is given by Q(t) = t3 − 3t2 + t+ 30
grams at time t ≥ 0 seconds.

(A) Over which intervals with t ≥ 0 is the amount increasing? decreasing?

Solution: We need Q′(t) = 3t2 − 6t + 1 to see this. Note that Q′(t) = 0 when t =
6±
√
36−12
6 = 3±

√
6

3
.
= .18, 1.82. Q′(t) < 0 between these two values and positive outside

that interval. So for t ≥ 0, Q(t) is increasing on [0, .18) and (1.82,+∞). It is decreasing
on (.18, 1.82).

(B) Over which intervals is the rate of change of Q increasing? decreasing?

Solution: The rate of change of Q is Q′(t). This is increasing on intervals where (Q′)′(t) =
Q′′(t) is positive and negative on intervals where Q′′(t) is negative. Since Q′′(t) = 6t−6,
we see that the rate of change of Q is increasing on (1,+∞) and decreasing on [0, 1)
(intervals of t-values).

III. A spherical balloon is being inflated at 20 cubic inches per minute. (The volume of a sphere

of radius r is V = 4πr3

3 and the surface area is V = 4πr2.)

(A) When the radius is 6 inches, at what rate is the radius of the balloon increasing?

Solution: From V = 4πr3

3 , if we differentiate both sides with respect to t (time), we get

dV

dt
= 4πr2

dr

dt
.

The given value 20 cubic inches per minute is dV
dt . When r = 6, we have

20 = 4π62
dr

dt
⇒ dr

dt
=

20

144π
=

5

36π

inches per minute.
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(B) When the radius is 6 inches, at what rate is the surface area increasing?

Solution: From A = 4πr2, if we differentiate both sides with respect to t (time), we get
that the rate of change of the surface area is

dA

dt
= 8πr

dr

dt
.

Using the value dr
dt = 5

36π from part (A), we have

dA

dt
=

240π

36π
=

20

3

square inches per minute.

IV. A baseball diamond is a square with side of length 90 feet. After hitting the ball, a player
leaves home plate and runs toward first base at 15 ft/sec. (Assume the runner is running
straight along the base path – this is a bit unrealistic, of course, but let’s keep it simple for
the purposes of the problem!) How fast is the runner’s distance from second base changing
when he is half way to first base?

Solution: Let x be the distance traveled by the runner along the basepath. From a diagram
of the diamond, we can see that the runner’s position, first base, and second base form a right
triangle (with right angle at first base) at all times up until the runner reaches first base. The
two legs of that triangle are 90 and 90−x, so by the Pythagorean theorem, the distance from
the runner to second base is

` =
√

902 + (90− x)2 =
√

16200− 180x+ x2.

Take derivatives with respect to t (time) everywhere. Then

d`

dt
=

1

2
(16200− 180x+ x2)−1/2(2x− 180)

dx

dt

The given value 15 ft/sec is the dx
dt , and we want the instant when x = 45. So at that time,

d`

dt
=

1

2
(16200− 180 · 45 + 452)−1/2(−90)(15) = − 15√

5

ft/sec. (This is negative, so the distance from the runner to second base is decreasing.)

V. All parts of this question refer to f(x) = 4x3 − x4.

(A) Find and classify all the critical points of f using the First Derivative Test.

Solution: f ′(x) = 12x2 − 4x3 = 4x2(3 − x). This is defined for all x and equal to zero
at x = 0 and x = 3. Note that 4x2 ≥ 0 for all x. So the sign of f ′(x) comes from the
3 − x factor. That is negative for x > 3 and positive for x < 3. Hence f ′ changes sign
from positive to negative at x = 3 and the First Derivative Test says f has a local local
maximum at x = 3. On the other hand, f ′(x) does not change sign at x = 0, so that
critical point is neither a local maximum nor a local minimum.
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Figure 1: Plot of y = f(x) for Problem V

(B) Over which intervals is the graph y = f(x) concave up? concave down?

Solution: f ′′(x) = 24x − 12x2 = 12x(2 − x), which is zero at x = 0 and x = 2. Then
f ′′(x) > 0 and the graph y = f(x) is concave up on (0, 2) and f ′′(x) < 0 and the graph
y = f(x) is concave down on (−∞, 0) and (2,∞).

(C) Sketch the graph y = f(x).

Solution: See Figure for problem V.

(D) Find the absolute maximum and minimum of f(x) on the interval [1, 4].

Solution: Only the critical point x = 3 is in this interval. f(1) = 8, f(3) = 27 and
f(4) = 0. So f(3) = 27 is the maximum value and f(4) = 0 is the minimum value on
the interval [1, 4].

VI. All three parts of this question refer to the function f(x) whose derivative is plotted in the
Figure for problem VI. NOTE: This is the graph y = f ′(x) not y = f(x).

(A) Give approximate values for all the critical points of f(x) in the interval shown, and say
whether f has a local maximum, a local minimum, or neither at each.

Solution: By inspection of the plot in Figure 1, we see that f ′(x) = 0 at approximately
x = −5.2,−2, and 1.2. Since f ′ changes sign from + to − at x = −5.2 and x = 1.2,
those are local maxima for f . Since f ′ changes sign from negative to positive at x = −2,
that is a local minimum for f .

(B) Find approximate values for all the inflection points of f(x).

Solution: y = f(x) has inflection points where f ′ changes from increasing to decreasing.
That happens here at roughly x = −3.9 and x = −0.8.
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Figure 2: Plot of y = f ′(x) for Problem VI

(C) Over which intervals is y = f(x) concave up? concave down?

Solution: Following on from (B), y = f(x) will be concave down on intervals where
f ′(x) is decreasing – roughly (−6,−3.9) and (−0.8, 2). y = f(x) will be concave up on
intervals where f ′(x) is increasing – roughly (−3.9,−0.8).

VII. Optimization problems.

(A) A rectangular box with no top is created out of a rectangular piece of cardboard by
cutting equal squares out of the four corners and folding up the sides. If the original
piece of cardboard was 20 inches by 15 inches, what is the largest volume possible for
the resulting box? (Hint: Let x be the side of the four squares cut out of the corners.
The volume is length times width times height.)

Solution: As suggested, let x be the side of the small squares cut out of the rectangular
sheet of cardboard. Then, after folding up the sides, the rectangular box will have length
20− 2x, width 15− 2x and height x. (Note that this says x is restricted to the interval
[0, 15/2] = [0, 7.5] since 15− 2x ≥ 0 is necessary to be able to fold up the sides to get a
box!) The volume is

V (x) = (20− 2x)(15− 2x)x = 300x− 70x2 + 4x3.

Taking the derivative with respect to x and set equal to zero:

V ′ = 300− 140x+ 12x2 = 0.

The solutions are x
.
= 2.83, 8.84 (quadratic formula). Only x

.
= 2.83 is in the interval

[0, 7.5] noted before. So that is our candidate for the side of the small squares. This is
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a local maximum since V ′′ = −140 + 24x < 0 at x
.
= 2.83. This x also gives the global

maximum of the volume since it is the only critical point on the interval of feasible
x-values. The actual answer to the problem is the volume

V (2.83) = (20− 5.66)(15− 5.66)(2.83)
.
= 379

cubic inches.

(B) A rectangular poster is to be created with 400 square inches of printed material sur-
rounded by 2 inch margins on the top and bottom and the left and right edges. What
should the dimensions of the poster be to minimize the total area (printed material plus
margins)?

Solution: Let the overall dimensions of the poster be x, y. Then the inner printed area
is a rectangle with area 400 = (x − 4)(y − 4). This lets us solve for y in terms of x:
y = 400

x−4 + 4. The total area of the poster is

A = xy = x

(
400

x− 4
+ 4

)
=

400x

x− 4
+ 4x

Then by the quotient rule,

A′(x) =
(x− 4) · 400− 400x

(x− 4)2
+ 4 =

−1600

(x− 4)2
+ 4

For a critical point, we set this equal to zero and solve for x:

−1600

(x− 4)2
+ 4 = 0⇒ (x− 4)2 = 400⇒ x = 24,

and then from (x− 4)(y− 4) = 400, we get y = 24 as well. This corresponds to a square
poster. Is this a minimum? Well, differentiating again,

A′′(x) =
3200

(x− 4)3
⇒ A′′(24) =

3200

203
> 0.

By the Second Derivative Test, this says we have a local and global minimum (again, it
has to be global minimum since it’s the only critical point and a local minimum).

(C) A billboard 20 feet tall is mounted 10 feet above eye level on the wall of a building. How
far should a person stand from the wall in order to maximize the angle θ subtended by
the billboard at the person’s eye. (Hint: Draw a diagram first; see the top diagram in
Figure 30 on page 248 of the text if you cannot figure out what this means.)

Solution: Let x be the distance from the wall that the person stands. Referring to the
diagram we see

θ = tan−1(30/x)− tan−1(10/x)

We want to maximize this angle as a function of x. Taking derivatives, we get

dθ

dx
=

1

1 +
(
30
x

)2 · −30

x2
− 1

1 +
(
10
x

)2 · −10

x2

=
−30

x2 + 302
+

10

x2 + 102
.
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This equals zero (i.e. we have a critical point) when

30

x2 + 302
=

10

x2 + 102

which implies
30(x2 + 100) = 10(x2 + 900)

or
30x2 + 3000 = 10x2 + 9000

or 20x2 = 6000, so x =
√

300 = 17.32 feet. The best way to see that this is a local and
global maximum is to use the first derivative test. dθ

dx > 0 for small x and dθ
dx < 0 for

large x.

(D) A window has the shape of a rectangle surmounted by a semicircle (see Figure 10 on page
245 of our textbook if you don’t understand what this means). The total perimeter of
the window is 600 cm. What should the dimensions be to make the area of the window
be as large as possible (so that it will admit the most light possible)?

Solution: Let the dimensions of the rectangle be x, y and say x is the horizontal side, so
the radius of the semicircle is x/2. Then the perimeter is

600 = x+ 2y +
πx

2
.

This lets us solve for y in terms of x:

y = 300− x

2
− πx

4
= 300− 2 + π

4
x.

The total area is the area of the rectangle plus the area of the semicircle:

A = xy +
π(x/2)2

2
= xy +

πx2

8
= x

(
300− 2 + π

4
x

)
+
πx2

8
= 300x− 4 + π

8
x2.

Taking the derivative with respect to x we get

A′(x) = 300− 4 + π

4
x.

Setting this equal to zero and solving for x,

x =
1200

4 + π

.
= 168 cm.

Substituting this into the formula for y above, we get y
.
= 84 cm. These dimensions

maximize the area because A′′ = −4+π
4 < 0, so our critical point is a local and global

maximum.
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