MATH 133 - Calculus with Fundamentals 1
Discussion Day - "Derivative Practice" - Solutions
November 5, 2015

Questions

(1) Differentiate each of these with respect to the indicated variable. Note: you will want to think first about which rule(s) you need to apply, and then apply them. Don't worry too much about simplifying your answers - any correct form is OK for this.
(a) $f(x)=\frac{x^{2}+e^{x}}{\sqrt{x}}$

Solution: Write $\sqrt{x}=x^{1 / 2}$. By the quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{1 / 2}\left(2 x+e^{x}\right)-\left(x^{2}+e^{x}\right) \frac{1}{2} x^{-1 / 2}}{\left(x^{1 / 2}\right)^{2}} \\
& =\frac{3 x^{2}+2 x e^{x}-e^{x}}{2 x^{3 / 2}}
\end{aligned}
$$

(b) $g(t)=e^{t}\left(1+\frac{t^{2}}{1+t^{2}}\right)$

Solution: Use the product and quotient rules:
$g^{\prime}(t)=e^{t}\left(\frac{\left(1+t^{2}\right)(2 t)-t^{2}(2 t)}{\left(1+t^{2}\right)^{2}}\right)+e^{t}\left(1+\frac{t^{2}}{1+t^{2}}\right)=e^{t}\left(\frac{2 t}{\left(1+t^{2}\right)^{2}}\right)+e^{t}\left(1+\frac{t^{2}}{1+t^{2}}\right)$.
(c) $h(z)=\frac{3}{z^{2 / 3}}-z\left(e^{z}+4 z\right)$

Solution: It's easier to write the first part of this as a power instead of using the quotient rule:

$$
h(z)=3 z^{-2 / 3}-z\left(e^{z}+4 z\right)
$$

so

$$
h^{\prime}(z)=-2 z^{-5 / 3}-z\left(e^{z}+4\right)-\left(e^{z}+4 z\right)=-2 z^{-5 / 3}-z e^{z}-e^{z}-8 z
$$

(2) Section 3.4 in our book builds on the way we motivated the study of derivatives by considering instantaneous velocities and slopes of tangent lines. If f is any function and $f^{\prime}(a)$ exists, then we can think of $f^{\prime}(a)$ as an (instantaneous) rate of change of f with respect to the variable in f, at a. The units of an instantaneous rate of change are always (units of f-values)/(units of the input variable in f). For instance, if we had a function $P(R)$ giving the electrical power (in units of watts) delivered to a device by a battery, as a function of the resistance of the device (in units of ohms), then the units of $P^{\prime}(R)$ would be watts/ohm. So suppose we have a battery delivering power to a device with

$$
P(R)=\frac{2.25 R}{(R+.5)^{2}}=\frac{2.25 R}{R^{2}+R+.25}
$$

where $R \geq 0$.

Figure 1: Plot of power P versus resistance R for $R>0$
(a) What is the instantaneous rate of change of the power with respect to resistance when $R=3$ ohms? (Give your answer with correct units.)
Solution: First we compute by the quotient rule:

$$
P^{\prime}(R)=\frac{\left(R^{2}+R+.25\right)(2.25)-2.25 R(2 R+1)}{\left(R^{2}+R+.25\right)^{2}}=\frac{-2.25 R^{2}+.5625}{\left(R^{2}+R+.25\right)^{2}} .
$$

We want $P^{\prime}(3)=\frac{-2.25 \cdot 3^{2}+.5625}{\left(3^{2}+3+.25\right)^{2}} \doteq-.13$ watts/ohm. (This indicates that the power is decreasing as the resistance increases near $R=3$.)
(b) What is the power delivered to a device with $R=5$ ohms? What is the instantaneous rate of change of the power with respect to resistance when $R=5$ ohms? Give each answer with the correct units.)
Solution: The power is $P(5) \doteq .37$ watts. The rate of change of power with respect to resistance is $P^{\prime}(5) \doteq-.06$ watts/ohm.
(c) Is the instantaneous rate of change of the power with respect to resistance ever equal to zero? What does that mean? Generate a sketch of the graph of $P(R)$ (R on the horizontal axis, P on the vertical axis) and show any points where $P^{\prime}(R)=0$.
Solution: Yes, the rate of change of power with respect to resistance is zero when

$$
0=P^{\prime}(R) \Rightarrow-2.25 R^{2}-.5626=0 \Rightarrow R= \pm .5
$$

(I'm using the simplified form of $P^{\prime}(R)$ from part (a) to do this easily.) Since we only want $R>0$, the positive root $R=.5$ is the only one. The graph of $P(R)$ for positive R above in Figure 1 indicates what is happening.

