MATH 133 - Calculus with Fundamentals 1
Discussion Day on Lines and Linear Functions
September 5, 2017

Background

Recall that we say a function f is linear if $f(x)=m x+b$ for some constants m, b. The name comes from the fact that the graph $y=m x+b$ is a straight line in the plane. The number m is called the slope of the line and the constant b is called the y-intercept of the line.

Questions

1) (a) What is the equation of the line passing through the points $(1,4)$ and $(2,7)$?
(b) Sketch the line in part (a).
(c) What is the equation of the line parallel to the line from part (a) passing through the point $(-1,4)$? (Hint: What is true about the slopes of parallel lines?)
2) Consider lines with equations of the form $2 x+c y-3=0$.
(a) For which value of c does the line contain the point $(1,2)$?
(b) For which value of c does the line have slope -5 ?
(c) Is there any value of c such that the line is horizontal? Why or why not?
(d) For which value of c is the line perpendicular to the line given by $5 x-3 y+1=0$? (Hint: What is true about slopes of perpendicular lines?)
3) The volume V (in liters) of sample of 3 grams of carbon dioxide at 27 degrees Celsius was measured as a function of the pressure p (in atmospheres) with the results in the following table:

$$
\begin{array}{l|lllll}
p & 0.25 & 1.00 & 2.50 & 4.00 & 6.00 \\
\hline V & 6.72 & 1.68 & 0.67 & 0.42 & 0.27
\end{array}
$$

Is V (approximately) a linear function of p ? Why or why not? If so, find an approximate formula $V=m p+b$. If not, can you see an equation of a different form for V as a function of p ?

