Linear functions

MATH 133 - Calculus with Fundamentals, section 1, Prof. Little
June 10, 2015

Simple but extremely useful

- A linear function f is one given by an equation of the form $f(x)=m x+b$, where m, b are constants.

Simple but extremely useful

- A linear function f is one given by an equation of the form $f(x)=m x+b$, where m, b are constants.
- If $m=0$, then $f(x)=b$ is a constant function. So these are special cases.

Simple but extremely useful

- A linear function f is one given by an equation of the form $f(x)=m x+b$, where m, b are constants.
- If $m=0$, then $f(x)=b$ is a constant function. So these are special cases.
- The graph $y=m x+b$ is a (non-vertical) straight line, and this is the slope-intercept form of the equation of a line.

Simple but extremely useful

- A linear function f is one given by an equation of the form $f(x)=m x+b$, where m, b are constants.
- If $m=0$, then $f(x)=b$ is a constant function. So these are special cases.
- The graph $y=m x+b$ is a (non-vertical) straight line, and this is the slope-intercept form of the equation of a line.
- The constant $b=f(0)$, so the line contains y-axis intercept point $(0, b)$.

Simple but extremely useful

- A linear function f is one given by an equation of the form $f(x)=m x+b$, where m, b are constants.
- If $m=0$, then $f(x)=b$ is a constant function. So these are special cases.
- The graph $y=m x+b$ is a (non-vertical) straight line, and this is the slope-intercept form of the equation of a line.
- The constant $b=f(0)$, so the line contains y-axis intercept point $(0, b)$.
- The constant m is called the slope ("rise over run").
- Meaning of m : Let $\left(x_{1}, y_{1}\right)=\left(x_{1}, m x_{1}+b\right)$ and $\left(x_{2}, y_{2}\right)=\left(x_{2}, m x_{2}+b\right)$ be any two distinct points on the graph $y=m x+b$ (so $\left.x_{1} \neq x_{2}\right)$.

The meaning of the slope

The meaning of the slope

- Continuing from the last slide, the "rise over run" is

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{\left(m x_{1}+b\right)-\left(m x_{2}+b\right)}{x_{2}-x_{1}} \\
& =\frac{m x_{1}-m x_{2}}{x_{2}-x_{1}} \\
& =\frac{m\left(x_{2}-x_{1}\right)}{x_{2}-x_{1}} \\
& =m
\end{aligned}
$$

The meaning of the slope

- Continuing from the last slide, the "rise over run" is

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{\left(m x_{1}+b\right)-\left(m x_{2}+b\right)}{x_{2}-x_{1}} \\
& =\frac{m x_{1}-m x_{2}}{x_{2}-x_{1}} \\
& =\frac{m\left(x_{2}-x_{1}\right)}{x_{2}-x_{1}} \\
& =m
\end{aligned}
$$

- So if we write $\Delta y=y_{2}-y_{1}$ and $\Delta x=x_{2}-x_{1}$ for the changes in y and x from the first point to the second, then

$$
m=\frac{\Delta y}{\Delta x}
$$

The meaning of the slope

- Continuing from the last slide, the "rise over run" is

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{\left(m x_{1}+b\right)-\left(m x_{2}+b\right)}{x_{2}-x_{1}} \\
& =\frac{m x_{1}-m x_{2}}{x_{2}-x_{1}} \\
& =\frac{m\left(x_{2}-x_{1}\right)}{x_{2}-x_{1}} \\
& =m
\end{aligned}
$$

- So if we write $\Delta y=y_{2}-y_{1}$ and $\Delta x=x_{2}-x_{1}$ for the changes in y and x from the first point to the second, then

$$
m=\frac{\Delta y}{\Delta x}
$$

- This gives the key property of linear functions: If we change x to $x+\Delta x, \Delta y$ is always the same multiple $\Delta y=m \Delta x$ (it doesn't depend on what x is).

Geometric meaning

This is really just another way of saying that a straight line in the plane is "straight" - this diagram from p .12 of our text "says it all" - no matter which points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the line we take, the value of m is the same:

FIGURE 1 The slope m is the ratio "rise over run."

Example - Telling whether a function is linear

In a previous screencast, we looked at table of values for a function giving the measured period T of a pendulum as a function of the length L :

$L(\mathrm{~cm})$	20	30	40	50
$T(\mathrm{sec})$	0.9	1.1	1.27	1.42

Question: Is T linear, or perhaps approximately linear as a function of L ?

Example, continued

Here L values correspond to the x 's in the equation for a line (the L is the "independent variable") and the T values are the y 's (T is a function of L). Say the four entries from the table are $\left(L_{1}, T_{1}\right), \ldots,\left(L_{4}, T_{4}\right)$. With successive pairs:

$$
\begin{aligned}
& \frac{T_{2}-T_{1}}{L_{2}-L_{1}}=\frac{1.1-0.9}{30-20}=.02 \\
& \frac{T_{3}-T_{2}}{L_{3}-L_{2}}=\frac{1.27-1.1}{40-30}=.017 \\
& \frac{T_{4}-T_{3}}{L_{4}-L_{3}}=\frac{1.42-1.27}{50-40}=.015
\end{aligned}
$$

First Observation: Since the $\frac{\Delta T}{\Delta L}$ are not constant, the four data points $\left(L_{i}, T_{i}\right)$ do not lie on any one line - the function is not (exactly) linear.

Comments

Comments

- But in fact the slope values are all small and the differences are very small - indeed, the $\frac{\Delta T}{\Delta L}$ values all round to one decimal place as $m \doteq .2$ (approximately .2). So the data certainly is approximately linear.

Comments

- But in fact the slope values are all small and the differences are very small - indeed, the $\frac{\Delta T}{\Delta L}$ values all round to one decimal place as $m \doteq .2$ (approximately .2). So the data certainly is approximately linear.
- Here is a point plot of the $\left(L_{i}, T_{i}\right)$. It's actually quite hard to tell visually that these are not on one line:

Comments, continued

- Nevertheless, $\frac{\Delta T}{\Delta L}$ seems to be steadily decreasing as L increases, so this is a good hint that T is not a linear function of L. (If the data was essentially linear, but contained experimental error or other "noise" that made the points noncollinear, the $\frac{\Delta T}{\Delta L}$ values would vary randomly on both sides of the actual slope.)

Comments, continued

- Nevertheless, $\frac{\Delta T}{\Delta L}$ seems to be steadily decreasing as L increases, so this is a good hint that T is not a linear function of L. (If the data was essentially linear, but contained experimental error or other "noise" that made the points noncollinear, the $\frac{\Delta T}{\Delta L}$ values would vary randomly on both sides of the actual slope.)
- We should not draw any conclusions without more data points or a theoretical analysis of the physics involved.

Comments, continued

- Nevertheless, $\frac{\Delta T}{\Delta L}$ seems to be steadily decreasing as L increases, so this is a good hint that T is not a linear function of L. (If the data was essentially linear, but contained experimental error or other "noise" that made the points noncollinear, the $\frac{\Delta T}{\Delta L}$ values would vary randomly on both sides of the actual slope.)
- We should not draw any conclusions without more data points or a theoretical analysis of the physics involved.
- In a physics course, you see that T proportional to \sqrt{L} :

$$
T=2 \pi \sqrt{\frac{L}{g}},
$$

where g is the constant acceleration of gravity on the surface of the earth (i.e. $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ or about $16 \mathrm{ft} / \mathrm{sec}^{2}$). So this function is actually not linear.

