Shifting graphs; symmetries of graphs

MATH 133 - Calculus with Fundamentals, section 1, Prof. Little

June 10, 2015

Vertical shifts of graphs

Shift the whole graph $y=f(x)=\sin (x)$ up (i.e. along the direction of the positive y-axis) by 2 units in the $x y$-plane:

The new graph also satisfies the vertical line test (do you see why?) So the shifted graph is also the graph of some function $y=g(x)$. What is the formula for $g(x)$ to get the shifted graph?

- More precisely, the shifting means that for each point (x, y) on the graph $y=\sin (x)$, we want the point $(x, y+2)$ to be on the new shifted graph.
- More precisely, the shifting means that for each point (x, y) on the graph $y=\sin (x)$, we want the point $(x, y+2)$ to be on the new shifted graph.
- If $y=\sin (x)$ at a point on the original graph, then $(x, \sin (x)+2)$ is a point on the shifted graph.
- More precisely, the shifting means that for each point (x, y) on the graph $y=\sin (x)$, we want the point $(x, y+2)$ to be on the new shifted graph.
- If $y=\sin (x)$ at a point on the original graph, then $(x, \sin (x)+2)$ is a point on the shifted graph.
- This means the shifted graph comes from the function $y=g(x)=\sin (x)+2$.
- More precisely, the shifting means that for each point (x, y) on the graph $y=\sin (x)$, we want the point $(x, y+2)$ to be on the new shifted graph.
- If $y=\sin (x)$ at a point on the original graph, then $(x, \sin (x)+2)$ is a point on the shifted graph.
- This means the shifted graph comes from the function $y=g(x)=\sin (x)+2$.
- The general pattern is the same and we can "work it both ways:" If we know the graph $y=f(x)$, then the graph $y=f(x)+c$ is a vertical shift, up by c units along the y-direction if $c>0$, down by $|c|$ units if $c<0$.

A downward shift

For instance, we can ask: What does the graph $y=x^{2}-3$ look like?

- The graph $y=f(x)=x^{2}$ is the standard parabola with vertex at $(0,0)$, opening up.

A downward shift

For instance, we can ask: What does the graph $y=x^{2}-3$ look like?

- The graph $y=f(x)=x^{2}$ is the standard parabola with vertex at $(0,0)$, opening up.
- Here we want $y=g(x)=x^{2}-3=f(x)-3$.

A downward shift

For instance, we can ask: What does the graph $y=x^{2}-3$ look like?

- The graph $y=f(x)=x^{2}$ is the standard parabola with vertex at $(0,0)$, opening up.
- Here we want $y=g(x)=x^{2}-3=f(x)-3$.
- This has the form $f(x)+c$ for $c=-3$.

A downward shift

For instance, we can ask: What does the graph $y=x^{2}-3$ look like?

- The graph $y=f(x)=x^{2}$ is the standard parabola with vertex at $(0,0)$, opening up.
- Here we want $y=g(x)=x^{2}-3=f(x)-3$.
- This has the form $f(x)+c$ for $c=-3$.
- Since $-3<0$, we are shifting the whole parabola down by 3 units

Shifted parabola

(Because of the way the parabola is curving, a bit of an optical illusion occurs here: it is not obvious that the vertical separation between the two graphs is always 3 units. But that can be seen from the points plotted as circles with the arrows.)

Now, let's repeat the above sort of analysis, but shifting the graph $y=x^{2}$ by 2 units to the right.

For instance, from $(0,0)$ on the original parabola, we get the corresponding point $(2,0)$ on the shifted parabola.

The equation of a horizontal shift

- What is the equation of the shifted parabola?

The equation of a horizontal shift

- What is the equation of the shifted parabola?
- For each point (a, a^{2}) on the original parabola $y=x^{2}$, we get a corresponding point $\left(a+2, a^{2}\right)$ on the shifted parabola.

The equation of a horizontal shift

- What is the equation of the shifted parabola?
- For each point (a, a^{2}) on the original parabola $y=x^{2}$, we get a corresponding point $\left(a+2, a^{2}\right)$ on the shifted parabola.
- Writing $x=a+2$, we get $a=x-2$ so $y=a^{2}=(x-2)^{2}$.

The equation of a horizontal shift

- What is the equation of the shifted parabola?
- For each point (a, a^{2}) on the original parabola $y=x^{2}$, we get a corresponding point $\left(a+2, a^{2}\right)$ on the shifted parabola.
- Writing $x=a+2$, we get $a=x-2$ so $y=a^{2}=(x-2)^{2}$.
- Since the points on the shifted parabola have the form $\left(x,(x-2)^{2}\right)$, that is the graph of $y=(x-2)^{2}$.

The equation of a horizontal shift

- What is the equation of the shifted parabola?
- For each point (a, a^{2}) on the original parabola $y=x^{2}$, we get a corresponding point $\left(a+2, a^{2}\right)$ on the shifted parabola.
- Writing $x=a+2$, we get $a=x-2$ so $y=a^{2}=(x-2)^{2}$.
- Since the points on the shifted parabola have the form $\left(x,(x-2)^{2}\right)$, that is the graph of $y=(x-2)^{2}$.
- By the same reasoning, shifting left by 1 unit would give the graph $y=(x+1)^{2}$: If $\left(a, a^{2}\right)$ is on $y=x^{2}$, then $\left(a-1, a^{2}\right)$ is on the graph of $y=(x+1)^{2}$ since if $x=a-1$, then $a=x+1$.
- Shifting $y=f(x)$ horizontally gives the graph of $y=f(x+c)$ for some c, and vice versa, the graph $y=f(x+c)$ is a horizontal shift of $y=f(x)$.
- Shifting $y=f(x)$ horizontally gives the graph of $y=f(x+c)$ for some c, and vice versa, the graph $y=f(x+c)$ is a horizontal shift of $y=f(x)$.
- But, be careful - this works differently from the vertical shifts: The $+c$ is added to the x "inside" the function, and the signs of c work the opposite way from what you might expect: if $c>0$ the shift is to the left, and if $c<0$, the shift is to the right.
- Shifting $y=f(x)$ horizontally gives the graph of $y=f(x+c)$ for some c, and vice versa, the graph $y=f(x+c)$ is a horizontal shift of $y=f(x)$.
- But, be careful - this works differently from the vertical shifts: The $+c$ is added to the x "inside" the function, and the signs of c work the opposite way from what you might expect: if $c>0$ the shift is to the left, and if $c<0$, the shift is to the right.
- For example, $y=\sin (x-1)$ is the graph $y=\sin (x)$ shifted to the right by one unit; while $y=\sin (x+\pi)$ is the sine graph shifted to the left by π units.

Even functions and y-axis symmetry of graphs

- A function f is said to be even if $f(-x)=f(x)$ for all x.

Even functions and y-axis symmetry of graphs

- A function f is said to be even if $f(-x)=f(x)$ for all x.
- In other words, the y-coordinates on the points $(x, f(x))$ and $(-x, f(-x))$ are the same for all x.

Even functions and y-axis symmetry of graphs

- A function f is said to be even if $f(-x)=f(x)$ for all x.
- In other words, the y-coordinates on the points $(x, f(x))$ and $(-x, f(-x))$ are the same for all x.
- The function $f(x)=x^{2}$ is an example since $f(-x)=(-x)^{2}=x^{2}=f(x)$ for all x.

Even functions and y-axis symmetry of graphs

- A function f is said to be even if $f(-x)=f(x)$ for all x.
- In other words, the y-coordinates on the points $(x, f(x))$ and $(-x, f(-x))$ are the same for all x.
- The function $f(x)=x^{2}$ is an example since $f(-x)=(-x)^{2}=x^{2}=f(x)$ for all x.
- Saying f is even is the same as saying the graph $y=f(x)$ has y-axis symmetry.

Odd functions and their symmetry

- A function f is said to be odd if $f(-x)=-f(x)$ for all x.

Odd functions and their symmetry

- A function f is said to be odd if $f(-x)=-f(x)$ for all x.
- In other words, if $(x, f(x))$ is on the graph, then so is $(-x, f(-x))=(-x,-f(x))$.

Odd functions and their symmetry

- A function f is said to be odd if $f(-x)=-f(x)$ for all x.
- In other words, if $(x, f(x))$ is on the graph, then so is $(-x, f(-x))=(-x,-f(x))$.
- The function $f(x)=x^{3}$ is an example since $f(-x)=(-x)^{3}=(-1)^{3} x^{3}=-x^{3}=-f(x)$.

Odd functions and their symmetry

- A function f is said to be odd if $f(-x)=-f(x)$ for all x.
- In other words, if $(x, f(x))$ is on the graph, then so is $(-x, f(-x))=(-x,-f(x))$.
- The function $f(x)=x^{3}$ is an example since

$$
f(-x)=(-x)^{3}=(-1)^{3} x^{3}=-x^{3}=-f(x)
$$

- Our book says that $y=f(x)$ has symmetry about the origin if f is odd.

Odd functions and their symmetry

- A function f is said to be odd if $f(-x)=-f(x)$ for all x.
- In other words, if $(x, f(x))$ is on the graph, then so is $(-x, f(-x))=(-x,-f(x))$.
- The function $f(x)=x^{3}$ is an example since $f(-x)=(-x)^{3}=(-1)^{3} x^{3}=-x^{3}=-f(x)$.
- Our book says that $y=f(x)$ has symmetry about the origin if f is odd.
- To visualize this: If (a, b) is a point in the plane, then $(-a,-b)$ can be obtained by rotating the plane by 180 degrees (or π radians) about the origin.

Odd functions and their symmetry

- A function f is said to be odd if $f(-x)=-f(x)$ for all x.
- In other words, if $(x, f(x))$ is on the graph, then so is $(-x, f(-x))=(-x,-f(x))$.
- The function $f(x)=x^{3}$ is an example since $f(-x)=(-x)^{3}=(-1)^{3} x^{3}=-x^{3}=-f(x)$.
- Our book says that $y=f(x)$ has symmetry about the origin if f is odd.
- To visualize this: If (a, b) is a point in the plane, then $(-a,-b)$ can be obtained by rotating the plane by 180 degrees (or π radians) about the origin.
- Rotating the whole plane this way, the graph of an odd function is taken to itself (but points in the first quadrant would get rotated around to the third quadrant, etc.).

An odd function and symmetry about the origin

Figure: $y=x^{3}$

Figure: Rotations of $y=x^{3}$

On the right, the dotted curves are rotations of $y=x^{3}$ by whole number multiples of 30 degrees counterclockwise. The red arc gives the path followed by $\left(1.1,(1.1)^{3}\right)$ on $y=x^{3}$. After a rotation through 180 degrees, we're back to $y=x^{3}(!)$

