Functions, Tables and Graphs

MATH 133 - Calculus with Fundamentals, section 1, Prof. Little
June 10, 2015

Functions - a conceptual view

INPUT x

- The "name" of the function is f
- Inputs x come from some domain (for us - usually a set of real numbers)
- Outputs in some other specified set (for us - also usually a set of real numbers)
- Key point: For each x in the domain, there is exactly one output, denoted by $f(x)$.
- Example: The number N of tickets to a concert that will be sold is a function of the price P in dollars of the ticket $N(P)$ is the number sold if the price is P dollars.
- Example: The number N of tickets to a concert that will be sold is a function of the price P in dollars of the ticket $N(P)$ is the number sold if the price is P dollars.
- Example: The length in meters L of a metal rod is a function of the temperature T of the rod (in degrees Celsius) $-L(T)$ is the length in meters if the temperature is T degrees.

Functions can serve as mathematical models

- Example: The number N of tickets to a concert that will be sold is a function of the price P in dollars of the ticket $N(P)$ is the number sold if the price is P dollars.
- Example: The length in meters L of a metal rod is a function of the temperature T of the rod (in degrees Celsius) $-L(T)$ is the length in meters if the temperature is T degrees.
- Example: The period T in seconds of a pendulum (with a weight of a fixed mass) is a function of the length L in centimeters of the pedulum $-L(T)$ is the period in seconds if the length is L centimeters.

Functions described by formulas

You have no doubt seen this sort of function many times: Let f be the function defined by

$$
f(x)=\frac{x^{2}-1}{x^{2}+3 x} .
$$

What this means: We find $f(x)$ by "plugging a value for x into the formula"

$$
\begin{gathered}
x=-1 \Rightarrow f(-1)=\frac{(-1)^{2}-1}{(-1)^{2}+3 \cdot(-1)}=\frac{0}{-2}=0 \\
x=5 \Rightarrow f(5)=\frac{(5)^{2}-1}{(5)^{2}+3 \cdot 5}=\frac{24}{40}=\frac{3}{5}=0.6 \\
x=a^{3} \Rightarrow f\left(a^{3}\right)=\frac{\left(a^{3}\right)^{2}-1}{\left(a^{3}\right)^{2}+3 \cdot a^{3}}=\frac{a^{6}-1}{a^{6}+3 a^{3}} .
\end{gathered}
$$

Example, continued

Still considering the function

$$
f(x)=\frac{x^{2}-1}{x^{2}+3 x}
$$

- You may have noticed that there are some values where "plugging in" leads to a problem, since $x^{2}+3 x=x(x+3)=0$ when $x=0$ or $x=-3$.

Example, continued

Still considering the function

$$
f(x)=\frac{x^{2}-1}{x^{2}+3 x}
$$

- You may have noticed that there are some values where "plugging in" leads to a problem, since $x^{2}+3 x=x(x+3)=0$ when $x=0$ or $x=-3$.
- For instance $f(0)=\frac{(0)^{2}-1}{(0)^{2}+3 \cdot 0}=\frac{-1}{0}$ is undefined(!)

Example, continued

Still considering the function

$$
f(x)=\frac{x^{2}-1}{x^{2}+3 x}
$$

- You may have noticed that there are some values where "plugging in" leads to a problem, since $x^{2}+3 x=x(x+3)=0$ when $x=0$ or $x=-3$.
- For instance $f(0)=\frac{(0)^{2}-1}{(0)^{2}+3 \cdot 0}=\frac{-1}{0}$ is undefined(!)
- Similarly $f(-3)$ causes a problem:

$$
f(-3)=\frac{(-3)^{2}-1}{(-3)^{2}+3 \cdot(-3)}=\frac{9-1}{9-9}=\frac{8}{0} .
$$

Example, continued

Still considering the function

$$
f(x)=\frac{x^{2}-1}{x^{2}+3 x}
$$

- You may have noticed that there are some values where "plugging in" leads to a problem, since $x^{2}+3 x=x(x+3)=0$ when $x=0$ or $x=-3$.
- For instance $f(0)=\frac{(0)^{2}-1}{(0)^{2}+3 \cdot 0}=\frac{-1}{0}$ is undefined(!)
- Similarly $f(-3)$ causes a problem:

$$
f(-3)=\frac{(-3)^{2}-1}{(-3)^{2}+3 \cdot(-3)}=\frac{9-1}{9-9}=\frac{8}{0} .
$$

- For this reason, we must leave $x=0,-3$ out of the domain of this function, but any other real $x \neq 0,-3$ is OK.

Unless a particular domain is specified for a function defined by a formula, the domain is the set of all real x for which the formula makes sense.

- Example: The function defined by the formula

$$
f(x)=\frac{\sqrt{x+1}}{x-3}
$$

can be determined like this:

Unless a particular domain is specified for a function defined by a formula, the domain is the set of all real x for which the formula makes sense.

- Example: The function defined by the formula

$$
f(x)=\frac{\sqrt{x+1}}{x-3}
$$

can be determined like this:

- Must have $x+1 \geq 0$ to take the square root, so $x \geq-1$.

Unless a particular domain is specified for a function defined by a formula, the domain is the set of all real x for which the formula makes sense.

- Example: The function defined by the formula

$$
f(x)=\frac{\sqrt{x+1}}{x-3}
$$

can be determined like this:

- Must have $x+1 \geq 0$ to take the square root, so $x \geq-1$.
- But also, $x \neq 3$ or else the denominator is zero.

Unless a particular domain is specified for a function defined by a formula, the domain is the set of all real x for which the formula makes sense.

- Example: The function defined by the formula

$$
f(x)=\frac{\sqrt{x+1}}{x-3}
$$

can be determined like this:

- Must have $x+1 \geq 0$ to take the square root, so $x \geq-1$.
- But also, $x \neq 3$ or else the denominator is zero.
- All other x are OK, so the domain is the set of all x with
$-1<x<3$, or $x>3$ (or the union of the two open intervals $(-1,3)$ and $(3,+\infty)$).

Tables of values

Especially in experimental sciences, we might need to deal with an (incomplete) description of a function by a table of values. Here we have the measured period T of a pendulum as a function of the length L :

$L(\mathrm{~cm})$	20	30	40	50
$T(\mathrm{sec})$	0.9	1.1	1.27	1.42

Typical questions: Does T look linear, or approximately linear as a function of L ? If so, what line fits the data best?

The graph of a function

- For a function f with domain in the set of real numbers, where $f(x)$ is a real number for all x in the domain, the graph of f is the set of points (x, y) in the plane satisfying the equation: $y=f(x)$.
- For a function f with domain in the set of real numbers, where $f(x)$ is a real number for all x in the domain, the graph of f is the set of points (x, y) in the plane satisfying the equation: $y=f(x)$.
- In other words, the points that are on the graph are those of the form $(x, f(x))$ - the y-coordinate equals the function value at the x-coordinate.
- For a function f with domain in the set of real numbers, where $f(x)$ is a real number for all x in the domain, the graph of f is the set of points (x, y) in the plane satisfying the equation: $y=f(x)$.
- In other words, the points that are on the graph are those of the form $(x, f(x))$ - the y-coordinate equals the function value at the x-coordinate.
- If f is the function with $f(x)=x^{2}+1$, for instance $(-3,10)$ is on the graph since $f(-3)=(-3)^{2}+1=10$

The graph of a function

- For a function f with domain in the set of real numbers, where $f(x)$ is a real number for all x in the domain, the graph of f is the set of points (x, y) in the plane satisfying the equation: $y=f(x)$.
- In other words, the points that are on the graph are those of the form $(x, f(x))$ - the y-coordinate equals the function value at the x-coordinate.
- If f is the function with $f(x)=x^{2}+1$, for instance $(-3,10)$ is on the graph since $f(-3)=(-3)^{2}+1=10$
- But $(1,4)$ is not on the graph of $f(x)=x^{2}+1$, since $f(1)=(1)^{2}+1=2 \neq 4$.

Graphs

- This is the graph of $f(x)=x^{5}-3 x^{3}+10$, for x with $-3 \leq x \leq 3$
- For each $x=a$ in the domain, there is exactly one output $f(x)$, so vertical lines $x=$ a meet the graph just once.
- Often say - "the graph passes the vertical line test'

Other graphs

Other graphs such the unit circle with center at $(0,0)$, the set of (x, y) with $x^{2}+y^{2}-1=0$, do not "pass the vertical line test" and are not graphs of functions:

But the upper and lower semicircles, separately, are graphs(!)

Equations

Solve for y from the equation $x^{2}+y^{2}-1=0$:

Equations

Solve for y from the equation $x^{2}+y^{2}-1=0$:

- First, add 1 and subtract x^{2} from both sides:

$$
y^{2}=1-x^{2}
$$

Equations

Solve for y from the equation $x^{2}+y^{2}-1=0$:

- First, add 1 and subtract x^{2} from both sides:

$$
y^{2}=1-x^{2}
$$

- Now take square roots and recall that both choices of sign give solutions:

$$
y= \pm \sqrt{1-x^{2}}
$$

Equations

Solve for y from the equation $x^{2}+y^{2}-1=0$:

- First, add 1 and subtract x^{2} from both sides:

$$
y^{2}=1-x^{2}
$$

- Now take square roots and recall that both choices of sign give solutions:

$$
y= \pm \sqrt{1-x^{2}}
$$

- The equation $y=+\sqrt{1-x^{2}}$ gives the top half of the circle, and $y=-\sqrt{1-x^{2}}$ gives the bottom half.

Equations

Solve for y from the equation $x^{2}+y^{2}-1=0$:

- First, add 1 and subtract x^{2} from both sides:

$$
y^{2}=1-x^{2}
$$

- Now take square roots and recall that both choices of sign give solutions:

$$
y= \pm \sqrt{1-x^{2}}
$$

- The equation $y=+\sqrt{1-x^{2}}$ gives the top half of the circle, and $y=-\sqrt{1-x^{2}}$ gives the bottom half.
- The domain of $f_{ \pm}(x)= \pm \sqrt{1-x^{2}}$ is the set of x with $1-x^{2} \geq 0$, so $-1 \leq x \leq 1$.

