## Absolute Values and Intervals

MATH 133 - Calculus with Fundamentals, section 1, Prof. Little
June 10, 2015

## Absolute Value

In everyday terms, the absolute value leaves nonnegative numbers unchanged, but "flips" a negative number to the corresponding positive number. The "flipping" can be done by multiplying by -1 , so as a formula, if $x$ is a real number, then

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -1 \cdot x=-x & \text { if } x<0 .\end{cases}
$$

For instance,

## Absolute Value

In everyday terms, the absolute value leaves nonnegative numbers unchanged, but "flips" a negative number to the corresponding positive number. The "flipping" can be done by multiplying by -1 , so as a formula, if $x$ is a real number, then

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -1 \cdot x=-x & \text { if } x<0 .\end{cases}
$$

For instance,

- since 15.9 and 0 are both $\geq 0$,

$$
|15.9|=15.9 \quad \text { and } \quad|0|=0
$$

## Absolute Value

In everyday terms, the absolute value leaves nonnegative numbers unchanged, but "flips" a negative number to the corresponding positive number. The "flipping" can be done by multiplying by -1 , so as a formula, if $x$ is a real number, then

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -1 \cdot x=-x & \text { if } x<0\end{cases}
$$

For instance,

- since 15.9 and 0 are both $\geq 0$,

$$
|15.9|=15.9 \quad \text { and } \quad|0|=0
$$

- but since $-8.3<0$,

$$
|-8.3|=-(-8.3)=+8.3 .
$$

## Geometric meaning

We know that the collection of all real numbers can be seen as the set of points on the number line.


- If $x \geq 0$, then $|x|$ is the distance from 0 to $x$ along the line:



## Geometric meaning

We know that the collection of all real numbers can be seen as the set of points on the number line.


- If $x \geq 0$, then $|x|$ is the distance from 0 to $x$ along the line:

- If $x<0,|x|$ is still the positive distance along the line:


If $a$ and $b$ are any two real numbers, then $|a-b|$ is the (positive) distance along the number line from $a$ to $b$ (or what is the same, from $b$ to $a$, if the numbers satisfy $b<a$ as in the following picture):


For instance, $|(-3)-2|=|-5|=5$ gives the distance from $b=-3$ to $a=2$ along the number line.

## Intervals

We will use this notation for intervals on the real number line:

- The closed interval $[a, b]$ is the set of all real $x$ with $a \leq x$ and $x \leq b$. It is more common to write $a \leq x \leq b$ here, but you should always understand that this is the same as the two separate inequalities $a \leq x$ and $x \leq b$ given first.
- The open interval $(a, b)$ is the set of all real $x$ with $a<x$ and $x<b$, or $a<x<b$ (not including the endpoints $x=a, b)$.
- The half-closed interval $[a, b)$ includes the endpoint $a$ (and all $x$ strictly between $a$ and $b$ ), but not $b$.
- Similarly, the half-closed interval ( $a, b$ ] includes the endpoint $b$, but not $a$.


## An example

- Let's ask: What set of real numbers $x$ is defined by the condition $|x-2|<3$ ?


## An example

- Let's ask: What set of real numbers $x$ is defined by the condition $|x-2|<3$ ?
- In geometric terms, the distance $d$ from $x$ to 2 along the number line is strictly less than 3 . So $x$ must be less than 5 and greater than -1 :



## An example

- Let's ask: What set of real numbers $x$ is defined by the condition $|x-2|<3$ ?
- In geometric terms, the distance $d$ from $x$ to 2 along the number line is strictly less than 3 . So $x$ must be less than 5 and greater than -1 :

- That is, $|x-2|<3$ says the same thing as $-1<x<5$, so our set is the open interval $(-1,5)$.


## Another way to see this with algebra

For any real number $a$, the statement $|a|<r$ says the same thing as $-r<a<r$ (think of the distance from $a$ to 0 ). So

$$
\begin{aligned}
& |x-2|<3 \quad \text { is the same as } \quad-3<x-2<3, \\
& \text { which is the same as }(-3)+2<x<3+2 \text {, } \\
& \text { which is the same as }-1<x<5 \text {. }
\end{aligned}
$$

So as before, the set of all such $x$ is the interval $(-1,5)$.

## Any interval can be described with absolute values

- In fact, any open interval $(a, b)$ can be described in the form we saw in the last example.


## Any interval can be described with absolute values

- In fact, any open interval $(a, b)$ can be described in the form we saw in the last example.
- To illustrate this, let's consider the example of $(4,7)$.


## Any interval can be described with absolute values

- In fact, any open interval $(a, b)$ can be described in the form we saw in the last example.
- To illustrate this, let's consider the example of $(4,7)$.
- We want to write "the set of all $x$ with $4<x<7$ " in the form "the set of all $x$ with $|x-c|<r$ for some $c$ and $r$."


## Any interval can be described with absolute values

- In fact, any open interval $(a, b)$ can be described in the form we saw in the last example.
- To illustrate this, let's consider the example of $(4,7)$.
- We want to write "the set of all $x$ with $4<x<7$ " in the form "the set of all $x$ with $|x-c|<r$ for some $c$ and $r$."
- Thinking about what happened before, we see that $c$ should be exactly half-way between 4 and 7 .


## Any interval can be described with absolute values

- In fact, any open interval $(a, b)$ can be described in the form we saw in the last example.
- To illustrate this, let's consider the example of $(4,7)$.
- We want to write "the set of all $x$ with $4<x<7$ " in the form "the set of all $x$ with $|x-c|<r$ for some $c$ and $r$."
- Thinking about what happened before, we see that $c$ should be exactly half-way between 4 and 7 .
- Thus, $c$ is the midpoint of the interval: $c=\frac{4+7}{2}=\frac{11}{2}=5.5$.


## Any interval can be described with absolute values

- In fact, any open interval $(a, b)$ can be described in the form we saw in the last example.
- To illustrate this, let's consider the example of $(4,7)$.
- We want to write "the set of all $x$ with $4<x<7$ " in the form "the set of all $x$ with $|x-c|<r$ for some $c$ and $r$."
- Thinking about what happened before, we see that $c$ should be exactly half-way between 4 and 7.
- Thus, $c$ is the midpoint of the interval: $c=\frac{4+7}{2}=\frac{11}{2}=5.5$.
- Then, $r$ is the distance from the midpoint to either endpoint: $|7-5.5|=1.5$ and $|4-5.5|=1.5$.


## Any interval can be described with absolute values

- In fact, any open interval $(a, b)$ can be described in the form we saw in the last example.
- To illustrate this, let's consider the example of $(4,7)$.
- We want to write "the set of all $x$ with $4<x<7$ " in the form "the set of all $x$ with $|x-c|<r$ for some $c$ and $r$."
- Thinking about what happened before, we see that $c$ should be exactly half-way between 4 and 7 .
- Thus, $c$ is the midpoint of the interval: $c=\frac{4+7}{2}=\frac{11}{2}=5.5$.
- Then, $r$ is the distance from the midpoint to either endpoint: $|7-5.5|=1.5$ and $|4-5.5|=1.5$.
- Conclusion: The interval $(4,7)$ is the set of $x$ with $|x-5.5|<1.5$.

If $a<b$, then the open interval $(a, b)$ :

- has midpoint $c=\frac{a+b}{2}$, and
- the distance from $c$ to either endpoint is

$$
\left|b-\frac{a+b}{2}\right|=\frac{b-a}{2}=\left|a-\frac{a+b}{2}\right| .
$$

- So the interval is the set of all $x$ with

$$
\left|x-\frac{a+b}{2}\right|<\frac{b-a}{2}
$$

- No need to memorize this formula, but understand the process of how we got it!

