
Mathematics 136 – Calculus 2
Summary of Trigonometric Substitutions

October 17 and 18, 2016

The trigonometric substitution method handles many integrals containing expressions
like

√

a2 − x2,
√

x2 + a2,
√

x2 − a2

(possibly including expressions without the square roots!) The basis for this approach is
the trigonometric identities

1 = sin2 θ + cos2 θ

⇒ sec2 θ = tan2 θ + 1.

from which we derive other related identities:

√

a2 − (a sin θ)2 =

√

a2(1 − sin2 θ) =
√

a2 cos2 θ = a cos θ

√

(a tan θ)2 + a2 =
√

a2(tan2 θ + 1) =
√

a2 sec2 θ = a sec θ
√

(a sec θ)2 − a2 =
√

a2(sec2 θ − 1) =
√

a2 tan2 θ = a tan θ

(Technical note: We usually assume that a > 0 and 0 < θ < π/2 here so that all the trig
functions take positive values.) Hence,

1. If our integral contains
√

a2 − x2, the substitution x = a sin θ will convert this radical
to the simpler form a cos θ.

2. If our integral contains
√

x2 + a2, the substitution x = a tan θ will convert this radical
to the simpler form a sec θ.

3. If our integral contains
√

x2 − a2, the substitution x = a sec θ will convert this radical
to the simpler form a tan θ.

We substitute for the rest of the integral including the dx. For instance if x = a sin θ,
then the dx = a cos θ dθ. If x = a tan θ, then dx = a sec2 θ dθ. If x = a sec θ, then
dx = a sec θ tan θ dθ. All these substitutions should produce an integral with no x terms
left – everything expressed in terms of θ. If desired, limits of integration on definite
integrals can also be converted to equivalent θ-values.

We then integrate the resulting trigonometric form using the trig methods discussed
last time, and convert back to the original variable (or substitute limits of integration in
terms of θ).

Two Worked Examples

A) Compute
∫

u2

√

a2−u2
du. Solution: The

√
a2 − u2 tells us that we want the sine substi-

tution: u = a sin θ. Then du = a cos θ dθ, and the integral becomes:
∫

a3 sin2 θ cos θ dθ

a cos θ
= a2

∫

sin2 θ dθ
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We apply the half-angle formula sin2 θ = 1

2
(1 − cos(2θ)) to this and integrate

a2

∫

1

2
(1 − cos(2θ)) dθ

to yield

=
a2

2
θ − a2

4
sin(2θ) =

a2θ

2
− a2

2
sin θ cos θ + C.

Then, we convert back to functions of u using the substitution equation u = a sin θ. From
this,

θ = arcsin(u/a), cos θ =
√

a2 − u2/a, sin θ = u/a

so the integral is

∫

u2

√
a2 − u2

du =
a2

2
arcsin(u/a) − 1

2
u
√

a2 − u2 + +C.

B) Compute
∫

dx
√

x2+16
. Solution: The

√
x2 + 16 indicates that we want the tangent sub-

stitution x = 4 tan θ. Then dx = 4 sec2 θ dθ and the integral becomes:

∫

4 sec2 θ dθ

4 sec θ
=

∫

sec θ dθ.

As we saw last time, this form can be integrated as follows:

ln |sec θ + tan θ| + C

Then, from x = 4 tan θ, we get sec θ =
√

x2+16

4
and tan θ = x

4
. Hence the integral equals:

ln

∣

∣

∣

∣

∣

√
x2 + 16

x
+

4

x

∣

∣

∣

∣

∣

+ C.

Note: If this was a definite integral, say

∫ 4

0

dx√
x2 + 16

,

then the equivalent limits of integration in terms of θ would be found from the formula
θ = tan−1(x/4), so x = 0 ⇔ θ = 0 and x = 4 ⇔ θ = π/4. If we used these values, then we
could apply the Evaluation Theorem to the trig integral, and it would not be necessary to
convert back to the antiderivative in terms of x.
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Practice Problems

A.
∫

x2
√

25 − x2 dx

(use the half-angle formulas to do the trigonometric integral you get).

B.
∫

1

(x2 + 1)3/2
dx

(if you don’t see how to integrate the trigonometric form, try writing it using sines and
cosines).

C.
∫

1

(x2 − 4)3/2
dx

using the substitution x = 2 sec(θ). You will also want to write this one using sines and
cosines(!)
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