MATH 136 - Calculus 2
Integration By Substitution Practice
September 16, 2016

Each of the following integrals can be done by the method of u-substitution:

1. Determine the appropriate function u,
2. Compute $d u$,
3. Change the integral to an equivalent form in the new variable u. If it is a definite integral, you can convert the limits of integration as well.
4. Integrate, then
5. Resubstitute u to express the answer in terms of the original variable (indefinite integral cases), or evaluate (definite integral cases).

- $\int x \sqrt{4 x^{2}+16} d x$
- $\int_{0}^{\pi} \cos \theta e^{1+\sin \theta} d \theta$
- $\int_{\pi / 4}^{\pi / 2} \cos ^{3}(4 \theta) \sin (4 \theta) d \theta$
- $\int \frac{1}{\sqrt{1-4 x^{2}}} d x$
- $\int \frac{x}{\sqrt{1-4 x^{2}}} d x$ (Note the difference with the previous one!)
- $\int \frac{1}{x(\ln (x))^{p}} d x$ (the number $p>0$ is a constant; your answer should depend on p and there should be two separate cases.)
- $\int x^{3} \sec \left(x^{4}\right) \tan \left(x^{4}\right) d x$
- $\int \frac{\cos (\sqrt{y})}{\sqrt{y}} d y$.
- $\int x^{3} \sqrt{4 x^{2}+16} d x$ (More challenging!)

