MATH 136 - Calculus 2
Worksheet on Antiderivatives
September 7, 2016

Background

As we have just seen, the indefinite integral (note - no limits of integration on the integral sign here; that is the "tip-off" that we're not talking about a definite integral, e.g. for an area):

$$
F(x)=\int f(x) d x
$$

is shorthand notation for the general antiderivative - that means the most general function such that $F^{\prime}(x)=f(x)$. For instance as we know the antiderivative Power Rule:

$$
\int x^{n} d x= \begin{cases}\frac{x^{n+1}}{n+1}+C & \text { if } n \neq-1 \\ \ln |x|+C & \text { if } n=-1\end{cases}
$$

We want to review some material from differential calculus by "thinking backwards" for the rest of the time today. Find the following anti

Questions

1) Find the following antiderivatives (indefinite integrals):
(a) $\int \sqrt{x}+\frac{1}{\sqrt[3]{x}}+\frac{4}{x^{3}} d x$ (Hint: Write as powers and use the Power Rule above)
(b) $\int \cos (x / 2) d x$ ("guess and check")
(c) $\int e^{5 x} d x$ ("guess and check")
(d) $\int \frac{1}{\sqrt{1-x^{2}}} d x$ (Hint: What function has a derivative that looks like this? It's not the inverse tangent that we discussed.)
2) How do we know that every antiderivative of a function like $f(x)=x^{2}$ looks like $F(x)=$ $\frac{x^{3}}{3}+C$? They certainly all "work," but could there be others too?
(a) Suppose you have the antiderivative $F_{1}(x)=\frac{x^{3}}{3}$ and $F_{2}(x)$ is any other antiderivative of x^{2}. What do you get if you take the derivative of the difference $F_{2}(x)-F_{1}(x)$?
(b) What does that say about the difference $F_{2}(x)-F_{1}(x)$?
(c) So what does $F_{2}(x)$ look like?
