College of the Holy Cross, Fall 2016
 Math 136, section 2 - Solutions for Midterm Exam 2 Retest Tuesday, November 8

I.
A. (15) Integrate by parts: $\int \tan ^{-1}(x) d x$. (Note there's really only one choice for u and hence $d v$.)

Solution: The only possible choice that leads to anything of value is $u=\tan ^{-1}(x)$ and $d v=d x$, so $d u=\frac{1}{x^{2}+1} d x$ and $v=x$. Then

$$
\int \tan ^{-1}(x) d x=x \tan ^{-1}(x)-\int \frac{x}{x^{2}+1} d x
$$

This remaining integral can be done via the substitution $w=x^{2}+1$, which takes it to $-\frac{1}{2} \int \frac{d w}{w}=-\frac{1}{2} \ln \left|x^{2}+1\right|$. The full answer is

$$
x \tan ^{-1}(x)-\frac{1}{2} \ln \left|x^{2}+1\right|+C
$$

B. (15) Integrate using appropriate trigonometric identities: $\int \sin ^{3}(6 x) \cos ^{4}(6 x) d x$.

Solution: With the odd power of sine, we split off one factor of $\sin (6 x)$ and use $\sin ^{2}(6 x)=1-\cos ^{2}(6 x)$ to convert the rest:

$$
\begin{aligned}
\int \sin ^{3}(6 x) \cos ^{4}(6 x) d x & =\int \sin (6 x)\left(1-\cos ^{2}(6 x)\right) \cos ^{4}(6 x) d x \\
& =\int \cos ^{4}(6 x) \sin (6 x) d x-\int \cos ^{6}(6 x) \sin (6 x) d x \quad(u=\cos (6 x)) \\
& =-\frac{1}{6} \int u^{4} d u+\frac{1}{6} \int u^{6} d u \\
& =-\frac{1}{30} u^{5}+\frac{1}{42} u^{7}+C \\
& =-\frac{1}{30} \cos ^{5}(6 x)+\frac{1}{42} \cos ^{7}(6 x)+C
\end{aligned}
$$

C. (20) Integrate with a trigonometric substitution: $\int \sqrt{25-x^{2}} d x$. (Partial credit points will be given as follows: 5 points for the substitution equation $x=\ldots$, and the computation of $d x, 5$ points for the conversion to the trigonometric integral, 5 points for the integration of the trigonometric integral, 5 points for conversion back to the equivalent function of x.)

Solution: Let $x=5 \sin (\theta)$, then $d x=5 \cos (\theta) d \theta$. The integral substitutes to

$$
\int \sqrt{25-25 \sin ^{2}(\theta)} \cdot 5 \cos (\theta) d \theta=25 \int \cos ^{2}(\theta) d \theta
$$

For this we use the identity $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta))$, so the integral becomes

$$
25 \int \frac{1}{2}(1+\cos (2 \theta)) d \theta=\frac{25 \theta}{2}+\frac{25}{4} \sin (2 \theta)+C,
$$

which can also be rewritten using the double angle formula for the sine:

$$
\frac{25 \theta}{2}+\frac{25}{2} \sin (\theta) \cos (\theta)+C .
$$

Converting back to functions of x, we have $\frac{x}{5}=\sin (\theta)$, so $\theta=\sin ^{-1}\left(\frac{x}{5}\right)$ and $\cos (\theta)=$ $\frac{\sqrt{25-x^{2}}}{5}$. So after simplifying we get

$$
\frac{25}{2} \sin ^{-1}\left(\frac{x}{5}\right)+\frac{x}{2} \sqrt{25-x^{2}}+C
$$

D. (5) Derive the reduction formula (assume $m \geq 2$ - this one is not done by parts):

$$
\int \tan ^{m}(x) d x=\frac{\tan ^{m-1}(x)}{m-1}-\int \tan ^{m-2}(x) d x
$$

Solution: (This same problem appeared on Problem Set 5 part B.) Break off 2 powers of $\tan (x)$ and convert that to $\sec ^{2}(x)-1$:

$$
\int \tan ^{m}(x) d x=\int \tan ^{m-2}(x)\left(\sec ^{2}(x)-1\right) d x=\int \tan ^{m-2}(x) \sec ^{2}(x) d x-\int \tan ^{m-2}(x) d x
$$

The first integral is $\int u^{m-2} d u$ for $u=\tan (x)$ so we get

$$
=\frac{\tan ^{m-1}(x)}{m-1}-\int \tan ^{m-2}(x) d x
$$

which is what we wanted to show.
E. (5) Use the formula from part D repeatedly to integrate $\int \tan ^{4}(x) d x$

Solution: Applying the formula from part D twice, with $m=4$, then $m=2$, we get:

$$
\begin{aligned}
\int \tan ^{4}(x) d x & =\frac{\tan ^{3}(x)}{3}-\int \tan ^{2}(x) d x \\
& =\frac{\tan ^{3}(x)}{3}-\tan (x)+\int 1 d x \\
& =\frac{\tan ^{3}(x)}{3}-\tan (x)+x+C
\end{aligned}
$$

II. All parts of this question refer to the region R bounded by $y=x e^{-x}$ (in red), the x-axis, $x=0$ and $x=2$.

A. (10) Set up and compute integral(s) to find the area of R.

Solution: The area is

$$
A=\int_{0}^{2} x e^{-x} d x
$$

Integrating by parts $\left(u=x, d v=e^{-x}\right)$ we get

$$
-x e^{-x}-\left.e^{-x}\right|_{0} ^{2}=1-3 e^{-2} \doteq .594
$$

B. (10) The region R is rotated about the x-axis to generate a solid. Set up and compute an integral to find its volume.

Solution: The volume has disk cross-sections so

$$
V=\int_{0}^{2} \pi\left(x e^{-x}\right)^{2} d x=\pi \int_{0}^{2} x^{2} e^{-2 x} d x
$$

So we integrate by parts again (twice this time with $u=x^{2}$, then $u=x$). The final answer is

$$
V=\frac{\pi}{4}\left(1-13 e^{-4}\right)
$$

C. (10) A solid has the portion of the region R as base. The cross-sections by planes perpendicular to the x-axis are equilateral triangles extending from the x-axis up to the point on the graph $y=x e^{-x}$. Set up an integral to find the volume. You do not need to compute this one, but if you do correctly, I will give 10 points Extra Credit.
Solution: The area of an equilateral triangle of side s is $\frac{s^{2} \sqrt{3}}{4}$, so the integral is

$$
\int_{0}^{2} \frac{\sqrt{3}}{4}\left(x e^{-x}\right)^{2} d x
$$

If you're clever, you'll note that this is exactly the same integral as in part C , up to the constant factor $\frac{\sqrt{3}}{4 \pi}$. So this volume is equal to

$$
\frac{\sqrt{3}}{16}\left(1-13 e^{-4}\right)
$$

with no extra computation(!)
III. (10) The area of a region in the plane is equally distributed about a point called its centroid. For a region R bounded by $y=f(x) \geq 0$, the x-axis, $x=a$ and $x=b$, take it as known that the y-coordinate of the centroid is computed by this ratio of two integrals:

$$
\bar{y}=\frac{\int_{a}^{b} \frac{1}{2}(f(x))^{2} d x}{\int_{a}^{b} f(x) d x} .
$$

Explain how this result shows that The volume of the solid generated by rotating R about the x-axis is equal to the product of the area of R and the distance traveled by the centroid as R moves around the x-axis. ${ }^{1}$

Solution: The centroid travels around a circle of radius \bar{y}, so the distance it travels is the circumference, or $2 \pi \bar{y}$. The area of the region is $\int_{a}^{b} f(x) d x$. Therefore the product of the distance traveled by the centroid and the area is:

$$
2 \pi \bar{y} \cdot \int_{a}^{b} f(x) d x
$$

We can substitute from the given formula for \bar{y} to get

$$
2 \pi \bar{y} \cdot \int_{a}^{b} f(x) d x=2 \pi \frac{\int_{a}^{b} \frac{1}{2}(f(x))^{2} d x}{\int_{a}^{b} f(x) d x} \cdot \int_{a}^{b} f(x) d x=\int_{a}^{b} \pi(f(x))^{2} d x
$$

We know this is the volume of the solid of revolution by Cavalieri's Principle.

[^0]
[^0]: ${ }^{1}$ This is a famous result of the ancient Greek mathematician Pappus of Alexandria who lived ca. 290 350 CE. He proved it without integral calculus, which had not yet been invented!

