College of the Holy Cross, Fall 2016
 Math 136 - Solutions for Midterm Exam 3
 December 1

I. [20 points] Integrate with the partial fraction method: $\int \frac{2 x^{2}+3}{x^{3}+9 x} d x$

Solution: The denominator factors as $x^{3}+9 x=x\left(x^{2}+9\right)$, where $x^{2}+9=0$ has no real roots. Therefore, the partial fractions will have the form:

$$
\frac{2 x^{2}+3}{x^{3}+9 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+9}
$$

so

$$
2 x^{2}+3=A\left(x^{2}+9\right)+(B x+C) x=(A+B) x^{2}+C x+9 A
$$

Equating coefficients of like powers of x, we get $9 A=3$, so $A=\frac{1}{3}, C=0$, and $A+B=2$, so $B=\frac{5}{3}$. Then we integrate:

$$
\begin{aligned}
\int \frac{2 x^{2}+3}{x^{3}+9 x} d x & =\frac{1}{3} \int \frac{1}{x} d x+\frac{5}{3} \int \frac{x}{x^{2}+9} \\
& =\frac{1}{3} \ln |x|+\frac{5}{6} \ln \left|x^{2}+9\right|+C
\end{aligned}
$$

II. For each integral, say why the integral is improper, then set up and evaluate the appropriate limits to determine whether the integral converges. If so, find its value; if not, say "does not converge." (Full credit will be given only for the correct limit calculation.)
A. [15 points] $\int_{2}^{\infty} x e^{-x} d x$.

Solution: This is improper because of the infinite upper limit of integration. To determine whether the integral converges, we compute

$$
\lim _{b \rightarrow \infty} \int_{2}^{b} x e^{-x} d x
$$

which is done by parts: $u=x$, so $d u=d x$ and $d v=e^{-x} d x$, so $v=-e^{-x}$:

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty}\left(-\left.x e^{-x}\right|_{2} ^{b}+\int_{2}^{b} e^{-x} d x\right) \\
& =\lim _{b \rightarrow \infty}\left(-\frac{b}{e^{b}}+\frac{2}{e^{2}}-e^{b}+\frac{1}{e^{2}}\right) \\
& =\frac{3}{2 e}
\end{aligned}
$$

(because $\lim _{b \rightarrow \infty} \frac{b}{e^{b}}=\lim _{b \rightarrow \infty} \frac{1}{e^{b}}=0$ by L'Hopital's Rule). The integral converges to $\frac{3}{2 e}$.
B. $[15$ points $] \int_{0}^{3} \frac{1}{x^{2}+4 x} d x$

Solution: This is improper because $\frac{1}{x^{2}+4 x}$ has a discontinuity (a vertical asymptote) at $x=0$, which is the left hand end-point of the interval $[0,3]$. It also has a second vertical asyptote at $x=-4$, but that is not relevant for this question. To determine whether the integral converges we need to find

$$
\lim _{a \rightarrow 0^{+}} \int_{a}^{3} \frac{1}{x^{2}+4 x} d x
$$

This integral is one we can do with partial fractions:

$$
\frac{1}{x^{2}+4 x}=\frac{A}{x}+\frac{B}{x+4}
$$

which yields $1=A(x+4)+B x$, so $A+B=0$ and $4 A=1$. Therefore $A=\frac{1}{4}$ and $B=-\frac{1}{4}$. As a result, we have

$$
\begin{aligned}
\lim _{a \rightarrow 0^{+}} \int_{a}^{3} \frac{1}{x^{2}+4 x} d x & =\lim _{a \rightarrow 0^{+}} \int_{a}^{3} \frac{1}{4 x}-\frac{1}{4(x+4)} d x \\
& =\lim _{a \rightarrow 0^{+}}\left(\frac{1}{4} \ln |x|-\left.\frac{1}{4} \ln |x+4|\right|_{a} ^{3}\right) \\
& =\lim _{a \rightarrow 0^{+}} \frac{1}{4}(\ln (3)-\ln (a)-\ln (7)+\ln (a+4))
\end{aligned}
$$

This does not exist because $\ln _{a \rightarrow 0^{+}} \ln (a)$ does not exist (the natural log has a vertical asymptote at 0 from the right). Therefore the integral does not exist (or diverges).
III. Both parts of this problem deal with the differential equation $\frac{d y}{d x}=\frac{y}{\sqrt{x}}$.
A. [15 points] Find the general solution $y(x)$ of the equation by separating variables and integrating.

Solution: We have

$$
\int \frac{1}{y} d y=\int x^{-1 / 2} d x
$$

so

$$
\ln (y)=2 x^{1 / 2}+C
$$

and hence

$$
y=D e^{2 x^{1 / 2}}
$$

where $D= \pm e^{C}$ is an arbitrary constant.
B. [5 points] Find the particular solution $y(x)$ satisfying the initial condition $y(1)=4$ and compute the exact value of $y(2)$.

Solution: The equation $y(1)=4$ says $4=D e^{2}$, so $D=4 e^{-2}$. Then $y(2)=4 e^{-2} e^{2 \sqrt{2}}=$ $4 e^{2 \sqrt{2}-2}$.
IV. [10 points] A population y satisfies the logistic growth equation

$$
\frac{d y}{d t}=(.3) y\left(1-\frac{y}{100}\right)
$$

and the initial condition $y(0)=3$. What is the population level when the population is growing the fastest?
Solution 1: $\frac{d y}{d t}$ is the rate of change of the population. So we are looking for y that maximizes

$$
(.3) y\left(1-\frac{y}{100}\right)=(.3)\left(y-\frac{y^{2}}{100}\right)
$$

The graph of this function is a parabola opening down. The maximum occurs where the derivative of this quadratic function of y is zero:

$$
(.3)\left(1-\frac{y}{50}\right)=0
$$

so $y=50$.
Solution 2: The general solution of this logistic equation is

$$
y=\frac{100}{1+d e^{-.3 t}}
$$

With the initial condition $y(0)=3$, we have $3=\frac{100}{1+d}$, so $d=97 / 3$. Then the rate of change of y as a function of t is given by:

$$
\frac{d y}{d t}=\frac{-970 e^{-.3 t}}{\left(1+\frac{97}{3} e^{-.3 t}\right)^{2}}
$$

To determine when this is a maximum, we can differentiate again with the quotient rule. After simplification:

$$
\frac{d^{2} y}{d t^{2}}=\frac{\left(25043 e^{-0.3 t}-7857\right) e^{-0.3 t}}{\left(1+\frac{97}{3} e^{-.3 t}\right)^{3}}
$$

This is zero when

$$
25043 e^{-0.3 t}-7857=0, \quad \text { or } \quad t \doteq 11.59
$$

Then $y(11.59) \doteq 50$.
V.
A. [10 points] A function $y=f(x)$ is plotted below.

Check the appropriate boxes for statements about $\int_{0}^{4} f(x) d x$:
Solution: The graph is concave up, which shows that the midpoint approximation is an underestimate and the trapezoidal rule approximation is an overestimate.
B. [10 points] Suppose you know that the function $f(x)$ plotted here is $g^{\prime \prime}(x)$ for some other function $g(x)$. How big would you need to take N to get a midpoint rule approximation to $\int_{0}^{4} g(x) d x$ with error $<10^{-5}$?

Solution: From the error bound for the midpoint rule, we have

$$
\left|\operatorname{Error}\left(M_{N}\right)\right| \leq \frac{K_{2} \cdot(4-0)^{3}}{24 N^{2}}
$$

where $K_{2}=\max _{x \in[0,3]}\left|g^{\prime \prime}(x)\right|$. From the graph we can take $K_{2}=1.5$ and then we want

$$
\frac{96}{24 N^{2}}<10^{-5}=.00001
$$

This is equivalent to

$$
N^{2}>\frac{96}{24 \cdot 0.00001},
$$

or

$$
N>\sqrt{\frac{96}{24 \cdot 0.00001}}=2000 .
$$

