College of the Holy Cross, Fall 2016

Math 136, section 2 - Solutions for Midterm Exam 2
 Friday, October 28

I.
A. (15) Integrate by parts: $\int x^{2} \sin (5 x) d x$

Solution: We integrate by parts twice, each time letting $u=$ power of x :

$$
\begin{aligned}
\int x^{2} \sin (5 x) d x & =\frac{-x^{2} \cos (5 x)}{5}+\frac{2}{5} \int x \cos (5 x) d x \\
& =\frac{-x^{2} \cos (5 x)}{5}+\frac{2}{5}\left(\frac{x \sin (5 x)}{5}-\frac{1}{5} \int \sin (5 x) d x\right) \\
& =\frac{-x^{2} \cos (5 x)}{5}+\frac{2 x \sin (5 x)}{25}+\frac{2 \cos (5 x)}{125}+C
\end{aligned}
$$

B. (10) Integrate using appropriate trigonometric identities: $\int \sec ^{4}(4 x) \tan ^{2}(4 x) d x$.

Solution: With the even power of sec we can proceed like this:

$$
=\int \sec ^{2}(4 x)\left(1+\tan ^{2}(4 x)\right) \tan ^{2}(4 x) d x=\int \tan ^{2}(4 x) \sec ^{2}(4 x) d x+\int \tan ^{4}(4 x) \sec ^{2}(4 x) d x .
$$

Each of these integrals can be handled with the substitution $u=\tan (4 x), d u=$ $4 \sec ^{2}(4 x) d x$. The integral is

$$
\frac{1}{12} \tan ^{3}(4 x)+\frac{1}{20} \tan ^{5}(4 x)+C .
$$

C. (20) Integrate with a trigonometric substitution: $\int \frac{x^{3}}{\sqrt{81-x^{2}}} d x$. (Partial credit points will be given as follows: 5 points for the substitution equation $x=\ldots$, and the computation of $d x, 5$ points for the conversion to the trigonometric integral, 5 points for the integration of the trigonometric integral, 5 points for conversion back to the equivalent function of x.)

Solution: Let $x=9 \sin \theta$, so $d x=9 \cos \theta d \theta$. The integral goes over to

$$
\int \frac{729 \sin ^{3} \theta}{9 \cos \theta} \cdot 9 \cos \theta d \theta=729 \int \sin ^{3} \theta d \theta
$$

Since we have the odd power of sin, we can split off one power, convert the other powers to cosines, then integrate with a u-substitution:

$$
=729 \int\left(1-\cos ^{2} \theta\right) \sin \theta d \theta=729 \int \sin \theta d \theta-729 \int \cos ^{2} \theta \sin \theta d \theta
$$

In the second, we let $u=\cos \theta$ and recognize the form as $\int u^{2} d u$. So the trig integral equals

$$
-729 \cos \theta+243 \cos ^{3} \theta+C
$$

Then from the triangle corresponding to the original $x=9 \sin \theta$, we have $\cos \theta=\frac{\sqrt{81-x^{2}}}{9}$ and the integral expressed in terms of x is

$$
-81 \sqrt{81-x^{2}}+\frac{\left(81-x^{2}\right)^{3 / 2}}{3}+C
$$

D. (10) Integrate with any applicable method we have discussed: $\int x^{4} \ln (x) d x$

Solution: Use integration by parts, but with $u=\ln (x)$ and $d v=x^{4} d x$. We get

$$
\int x^{4} \ln (x) d x=\frac{x^{5} \ln (x)}{5}-\int \frac{1}{x} \cdot \frac{x^{5}}{5} d x=\frac{x^{5} \ln (x)}{5}-\frac{x^{5}}{25}+C .
$$

II. All parts of this question refer to the region R bounded by the graphs $y=\sqrt{x}$ and $y=x^{2}$, $x=0$ and $x=2$:

A. (10) Set up and compute integral(s) to find the area of R.

Solution: Between $x=0$ and $x=1$, the graph $y=\sqrt{x}$ lies above $y=x^{2}$, but this switches between $x=1$ and $x=2$. So the area is computed by

$$
\int_{0}^{1} \sqrt{x}-x^{2} d x+\int_{1}^{2} x^{2}-\sqrt{x} d x=\frac{2}{3} x^{3 / 2}-\left.\frac{1}{3} x^{3}\right|_{0} ^{1}+\frac{1}{3} x^{3}-\left.\frac{2}{3} x^{3 / 2}\right|_{1} ^{2}=\frac{10-4 \sqrt{2}}{3} \doteq 1.45
$$

B. (10) The portion of the region R between $x=0$ and $x=1$ is rotated about the x-axis to generate a solid. Set up and compute an integral to find its volume.

Solution: The cross-sections by planes perpendicular to the x-axis are washers with inner radius $r_{i n}=x^{2}$ and outer radius $r_{\text {out }}=\sqrt{x}$. So the volume is

$$
\int_{0}^{1} \pi(\sqrt{x})^{2}-\pi\left(x^{2}\right)^{2} d x=\pi\left(\frac{x^{2}}{2}-\left.\frac{x^{5}}{5}\right|_{0} ^{1}\right)=\frac{3 \pi}{10} \doteq .94
$$

C. (10) A solid has the portion of the region R between $x=1$ and $x=2$ as base. The cross-sections by planes perpendicular to the x-axis are isosceles right triangles with hypotenuse extending from the lower boundary to the upper boundary of the region. Set up and compute an integral to find the volume.

Solution: An isosceles right triangle with hypotenuse h has legs of length $\frac{h}{\sqrt{2}}$ and area

$$
\frac{1}{2} \cdot \frac{h}{\sqrt{2}} \cdot \frac{h}{\sqrt{2}}=\frac{h^{2}}{4} .
$$

Here the cross-section for a general $1 \leq x \leq 2$ has $h=x^{2}-\sqrt{x}$, so our volume is computed by

$$
V=\int_{1}^{2} \frac{\left(x^{2}-\sqrt{x}\right)^{2}}{4} d x
$$

The Extra Credit computation - Continuing from the integral above,

$$
=\frac{1}{4} \int_{1}^{2} x^{4}-2 x^{5 / 2}+x d x=\frac{1}{4}\left(\frac{x^{5}}{5}-\frac{4}{7} x^{7 / 2}+\left.\frac{x^{2}}{2}\right|_{1} ^{2}\right)=\frac{579}{280}-\frac{8 \sqrt{2}}{7} .
$$

III. (15) Suppose that a region R defined by $0 \leq y \leq f(x)$ and $a \leq x \leq b$ has area A and lies above the x-axis. When R is rotated about the x-axis it sweeps out a solid with volume V_{1}. When R is rotated about the line $y=-k$, where $k>0$, it sweeps out a solid with volume V_{2}. Express V_{2} in terms of V_{1}, k, A.

Solution: Since $-k<0$, the cross-sections of the new solid are washers with outer radius $f(x)+k$ and inner radius k. The volume V_{2} equals

$$
V_{2}=\int_{a}^{b} \pi(f(x)+k)^{2}-\pi k^{2} d x=\int_{a}^{b} \pi(f(x))^{2} d x+2 k \pi \int_{a}^{b} f(x) d x
$$

The first integral here computes the volume V_{1} when R is rotated about the x-axis and the second computes the area of the region R. Hence this equals $V_{1}+2 k \pi A$. We have

$$
V_{2}=V_{1}+2 k \pi A .
$$

