College of the Holy Cross, Fall Semester, 2016 MATH 136, Section 02, Solutions for Practice Final Exam December 5, 2016

I.
(A) Let $f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 2 \\ x-1 & \text { if } 2<x \leq 4 . \text { whose graph is shown here: } \\ 11-2 x & \text { if } 4<x \leq 6\end{cases}$

Solution:

Let $F(x)=\int_{0}^{x} f(t) d t$, where $f(t)$ is the function from part (B). Complete the following table of values for $F(x)$:

Solution: The value $F(x)$ represents the signed area between the graph $y=f(x)$ and the x-axis:

x	0	1	2	3	4	5	6
$F(x)$	0	1	2	3.5	6	8	8

(B) Compute the derivative of the function $g(x)=\int_{0}^{2 x} \frac{\cos (t)}{t^{2}} d t$.

Solution: By the first part of the Fundamental Theorem of Calculus and the Chain Rule for derivatives:

$$
g^{\prime}(x)=\frac{\cos (2 x)}{(2 x)^{2}} \cdot 2=\frac{\cos (2 x)}{2 x^{2}} .
$$

II. Compute the following integrals.
(A) $\int \frac{x^{4}-3 \pi^{3}+\sqrt{x}}{x^{2 / 3}} d x$

Solution: Split into separate fractions, simplify and integrate:

$$
\begin{aligned}
\int \frac{x^{4}-3 \pi^{3}+\sqrt{x}}{x^{2 / 3}} d x & =\int x^{10 / 3}-3 \pi^{3} x^{-2 / 3}+x^{-1 / 6} d x \\
& =\frac{3}{13} x^{13 / 3}-9 \pi^{3} x^{1 / 3}+\frac{6}{5} x^{5 / 6}+C
\end{aligned}
$$

(B) $\int x^{3} e^{x^{2}} d x$ (integrate by parts)

Solution: The correct choice is $u=x^{2}$ and $d v=x e^{x^{2}} d x$ (note that you need the x with the exponential in order to integrate!) Hence $d u=2 x d x$ and $v=\frac{1}{2} e^{x^{2}}$. Then by the parts formula

$$
\int x^{3} e^{x^{2}} d x=\frac{1}{2} x^{2} e^{x^{2}}-\int x e^{x^{2}} d x=\frac{1}{2} x^{2} e^{x^{2}}-\frac{1}{2} e^{x^{2}}+C .
$$

(C) $\int \frac{\csc ^{2}(5 x) d x}{\cot (5 x)+7}$

Solution: This one can be handled by the u-substitution $u=\cot (5 x)+7$, for which $d u=-5 \csc ^{2}(5 x) d x$ by the Chain Rule. Then

$$
\int \frac{\csc ^{2}(5 x) d x}{\cot (5 x)+7}=\frac{-1}{5} \int u^{-1} d u=\frac{-1}{5} \ln |u|+C=\frac{-1}{5} \ln |\cot (5 x)+7|+C
$$

(D) $\int_{1}^{e} x^{5} \ln (x) d x$.

Solution: Integrate by parts with $u=\ln (x)$ and $d v=x^{5} d x$. Then $d u=\frac{1}{x} d x$ and $v=\frac{1}{6} x^{6}$ and by the integration by parts formula,

$$
\int x^{5} \ln (x) d x=\frac{x^{6}}{6} \ln (x)-\int \frac{1}{6} x^{6} \cdot \frac{1}{x} d x=\frac{x^{6}}{6} \ln (x)-\frac{x^{6}}{36}+C .
$$

For the definite integral, we apply the Fundamental Theorem to get

$$
\int_{1}^{e} x^{5} \ln (x) d x=\frac{x^{6}}{6} \ln (x)-\left.\frac{x^{6}}{36}\right|_{1} ^{e}=\frac{e^{6}}{6} \ln (e)-\frac{e^{6}}{36}-\frac{1}{6} \ln (1)+\frac{1}{36}=\frac{5 e^{6}+1}{36} .
$$

(E) $\int \frac{1}{\sqrt{16+x^{2}}} d x$

Solution: This can be done by the trigonometric substitution $x=4 \tan \theta$, so $d x=$ $4 \sec ^{2} \theta d \theta$, and $\sqrt{16+x^{2}}=\sqrt{16\left(1+\tan ^{2} \theta\right)}=4 \sec \theta$. This simplifies to

$$
\int \frac{1}{4 \sec \theta} \cdot 4 \sec ^{2} \theta d \theta=\int \sec \theta d \theta
$$

Now we use the memorized form of this integral, then convert back to x :

$$
\begin{aligned}
\int \sec \theta d \theta & =\ln |\sec \theta+\tan \theta|+C \\
& =\ln \left|\frac{\sqrt{x^{2}+16}}{4}+\frac{x}{4}\right|+C
\end{aligned}
$$

Using properties of logarithms and incorporating $-\ln (4)$ with the constant, this can also be written in the form:

$$
\ln \left|\sqrt{16+x^{2}}+x\right|+C
$$

(F) $\int \frac{x}{\left(x^{2}+1\right)(x+1)} d x$

Solution: Using partial fractions, we must solve for A, B, C to make:

$$
\frac{1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1} .
$$

Clearing denominators,

$$
1=A\left(x^{2}+1\right)+(B x+C)(x+1)
$$

so equating coefficients, $A+B=0, B+C=0$, and $A+C=1$. Solving simultaneously,

$$
A=\frac{1}{2}, \quad B=\frac{-1}{2}, \quad C=\frac{1}{2}
$$

Then

$$
\begin{aligned}
\int \frac{1}{(x+1)\left(x^{2}+1\right)} d x & =\int \frac{\frac{1}{2}}{x+1}+\frac{\frac{-x}{2}+\frac{1}{2}}{x^{2}+1} d x \\
& =\frac{1}{2} \ln |x+1|+\frac{-1}{4} \ln \left(x^{2}+1\right)+\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

III.
(A) The integral

$$
\int_{1}^{3} \sqrt{1+9 x^{4}} d x
$$

would compute the length of the curve $y=x^{3}$ from $x=1$ to $x=3$. Use a midpoint Riemann sum with $n=4$ to approximate its value.

Solution: The midpoint Riemann sum approximation is

$$
\begin{align*}
\int_{1}^{3} \sqrt{1+9 x^{4}} d x & \doteq\left(\sqrt{1+9(1.25)^{4}}+\sqrt{1+9(1.75)^{4}}+\sqrt{1+9(2.25)^{4}}+\sqrt{1+9(2.75)^{4}}\right)(.5) \\
& \doteq 25.98 \tag{B}
\end{align*}
$$

Solution: The midpoint approximation is an underestimate because $\sqrt{1+9 x^{4}}$ is concave up on $[0,2]$.
IV. A region R in the plane is bounded by the graphs $y=9-x^{2}, y=2 x, x=0$ and $x=1$.
(A) Compute the area of the region R.

Solution: Here is a sketch of the region:

The area is given by the integral

$$
A=\int_{0}^{1} 9-x^{2}-2 x d x=9 x-\frac{x^{3}}{3}-\left.x^{2}\right|_{0} ^{1}=\frac{23}{3}
$$

(B) Compute the volume of the solid obtained by rotating R about the x-axis.

Solution: The cross-sections of the solid by planes perpendicular to the x-axis are washers with inner radius $r_{i n}=2 x$ and outer radius $r_{\text {out }}=9-x^{2}$. So the volume is the integral of the area of the cross-section:

$$
\begin{aligned}
V=\int_{0}^{1} \pi\left(9-x^{2}\right)^{2}-\pi(2 x)^{2} d x & =\pi \int_{0}^{1} 81-22 x^{2}+x^{4} d x \\
& =\pi\left(81 x-\frac{22 x^{3}}{3}+\left.\frac{x^{5}}{5}\right|_{0} ^{1}\right) \\
& =\frac{1108 \pi}{15}
\end{aligned}
$$

(C) Set up the integral(s) to compute the volume of the solid obtained by rotating R about the y-axis. You do not need to compute the value.

Solution: The cross-sections by planes perpendicular to the y-axis are all disks, but the function giving the radius of the disk is given by three different formulas depending on whether $0 \leq y \leq 2$, or $2 \leq y \leq 8$, or $8 \leq y \leq 9$.

$$
V=\int_{0}^{2} \pi\left(\frac{y}{2}\right)^{2} d y+\int_{2}^{8} \pi(1)^{2} d y+\int_{8}^{9} \pi(\sqrt{9-y})^{2} d y
$$

V. The daily solar radiation x per square meter (in hundreds of calories) in Florida in October has a probability density function $f(x)=c(x-2)(6-x)$ if $2 \leq x \leq 6$, and zero otherwise. Find value of c and the probability that the daily solar radiation per square meter is greater than 4.

Solution: We must have

$$
1=\int_{2}^{6} c(x-2)(6-x) d x=c\left(-\frac{x^{3}}{3}+4 x^{2}-\left.12 x\right|_{2} ^{6}\right)=\frac{32 c}{3}
$$

Therefore $c=\frac{3}{32}$. Then the probability that $x>4$ is given by the integral

$$
\bar{x}=\int_{4}^{6} \frac{3}{32}(x-2)(6-x) d x=\int_{4}^{6} \frac{3 x}{4}-\frac{3 x^{2}}{32}-\frac{9}{8} d x=\frac{1}{2} .
$$

VI. An avian flu epidemic has broken out in Birdsburgh, a large city with total population 10 million. Let N be the number, in millions, of people who have been infected, as a function of time t in weeks. The Birdsburgh Public Health department proposes the model that the rate of change of N is proportional to the product of the number of infected people (N) and the number of people not yet infected.
(A) (10) Write the proposed model above as a differential equation, calling the constant of proportionality k.

Solution: If N people have been infected (N in millions), then the number who have not been infected is $10-N$ (millions). So the differential equation is

$$
\frac{d N}{d t}=k N(10-N)
$$

(Note that this can be put into the form of a logistic equation:

$$
\frac{d N}{d t}=(10 k) N\left(1-\frac{N}{10}\right) ;
$$

the 10 plays the role of the carrying capacity.)
(B) (5) The function $N(t)=10 /\left(1+9999 e^{-t}\right)$ should be a solution of your differential equation from part A. What is the value of k ?

Solution: For this N,

$$
\begin{equation*}
\frac{d N}{d t}=\frac{-99990 e^{-t}}{\left(1+9999 e^{-t}\right)^{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
N(10-N) & =\frac{10}{1+9999 e^{-t}} \cdot\left(10-\frac{10}{1+9999 e^{-t}}\right) \\
& =\frac{10 \cdot\left(-99990 e^{-t}\right)}{\left(1+9999 e^{-t}\right)^{2}} \tag{2}
\end{align*}
$$

Hence comparing (1) and (2), we must have $k=\frac{1}{10}=.1$. (Note: This could also be done by recognizing that the differential equation can be rearranged to the form of a logistic equation with constant $10 k: \frac{d N}{d t}=(10 k) N\left(1-\frac{N}{10}\right)$. The general solution of this is

$$
N=\frac{10}{1+c e^{-(10 k) t}}
$$

So if the given function is a solution we must have $c=9999$ and $10 k=1$, so $k=.1$.)
C) If the epidemic proceeds according the function given in part B, how many weeks will pass before the number of infected people reaches 1 million?

Solution: We must solve $1=\frac{10}{1+9999 e^{-t}}$. So $1+9999 e^{-t}=10$, and $t=-\ln (9 / 9999)=$ $\ln (1111) \doteq 7.0$ weeks. Note that the units of N are millions of people so the left side of the equation is $N=1$, not $N=1000000$.
VII.
(A) Does the infinite series $\sum_{n=0}^{\infty} \frac{1}{4^{n}}$ converge? If so, what is the sum?

Solution: Yes - this is a geometric series with $a=1$ and $r=\frac{1}{4}$, which is <1 in absolute value. The sum is $\frac{1}{1-\frac{1}{4}}=\frac{4}{3}$.
(B) Use the Integral Test to determine whether the infinite series $\sum_{n=3}^{\infty} \frac{1}{n(\ln (n))^{3}}$ converges.

Solution: The improper integral

$$
\begin{aligned}
\int_{3}^{\infty} \frac{1}{x(\ln (x))^{3}} d x & =\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{1}{x(\ln (x))^{3}} d x \\
& =\lim _{b \rightarrow \infty}-\left.\frac{1}{2(\ln (x))^{2}}\right|_{3} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{2(\ln (3))^{2}}-\left.\frac{1}{2(\ln (b))^{2}}\right|_{3} ^{b} \\
& =\frac{1}{2(\ln (3))^{2}}
\end{aligned}
$$

Since the integral converges, the series does too.
(C) Use the Ratio Test, then consider the endpoints separately, to determine the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}}$.

Solution: By the Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)^{2}} \cdot \frac{n^{2}}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}|x|=|x| .
$$

So the series converges absolutely for $|x|<1$, or on $(-1,1)$. At the two endpoints:

$$
x=1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

is convergent (a p-series with $p>1$).

$$
x=-1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which converges by the Alternating Series Test. Hence the whole interval of convergence is the closed interval $[-1,1]$.

